A sharply 2-transitive group without a non-trivial abelian normal subgroup
Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 2895-2910.

Voir la notice de l'article provenant de la source EMS Press

We show that any group G is contained in some sharply 2-transitive group G without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups G that we construct have no fixed points.
DOI : 10.4171/jems/730
Classification : 20-XX
Keywords: Sharply 2-transitive, free product, HNN-extension, malnormal
@article{JEMS_2017_19_10_a0,
     author = {Eliyahu Rips and Yoav Segev and Katrin Tent},
     title = {A sharply 2-transitive group without a non-trivial abelian normal subgroup},
     journal = {Journal of the European Mathematical Society},
     pages = {2895--2910},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2017},
     doi = {10.4171/jems/730},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/730/}
}
TY  - JOUR
AU  - Eliyahu Rips
AU  - Yoav Segev
AU  - Katrin Tent
TI  - A sharply 2-transitive group without a non-trivial abelian normal subgroup
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2895
EP  - 2910
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/730/
DO  - 10.4171/jems/730
ID  - JEMS_2017_19_10_a0
ER  - 
%0 Journal Article
%A Eliyahu Rips
%A Yoav Segev
%A Katrin Tent
%T A sharply 2-transitive group without a non-trivial abelian normal subgroup
%J Journal of the European Mathematical Society
%D 2017
%P 2895-2910
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/730/
%R 10.4171/jems/730
%F JEMS_2017_19_10_a0
Eliyahu Rips; Yoav Segev; Katrin Tent. A sharply 2-transitive group without a non-trivial abelian normal subgroup. Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 2895-2910. doi : 10.4171/jems/730. http://geodesic.mathdoc.fr/articles/10.4171/jems/730/

Cité par Sources :