Categorified duality in Boij–Söderberg theory and invariants of free complexes
Journal of the European Mathematical Society, Tome 19 (2017) no. 9, pp. 2657-2695
Cet article a éte moissonné depuis la source EMS Press
We present a robust categorical foundation for the duality theory introduced by Eisenbud and Schreyer to prove the Boij–Söderberg conjectures describing numerical invariants of syzygies. The new foundation allows us to extend the reach of the theory substantially.
Classification :
13-XX, 14-XX
Keywords: Syzygies, Betti tables, sheaf of cohomology
Keywords: Syzygies, Betti tables, sheaf of cohomology
@article{JEMS_2017_19_9_a1,
author = {David Eisenbud and Daniel Erman},
title = {Categorified duality in {Boij{\textendash}S\"oderberg} theory and invariants of free complexes},
journal = {Journal of the European Mathematical Society},
pages = {2657--2695},
year = {2017},
volume = {19},
number = {9},
doi = {10.4171/jems/725},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/725/}
}
TY - JOUR AU - David Eisenbud AU - Daniel Erman TI - Categorified duality in Boij–Söderberg theory and invariants of free complexes JO - Journal of the European Mathematical Society PY - 2017 SP - 2657 EP - 2695 VL - 19 IS - 9 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/725/ DO - 10.4171/jems/725 ID - JEMS_2017_19_9_a1 ER -
%0 Journal Article %A David Eisenbud %A Daniel Erman %T Categorified duality in Boij–Söderberg theory and invariants of free complexes %J Journal of the European Mathematical Society %D 2017 %P 2657-2695 %V 19 %N 9 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/725/ %R 10.4171/jems/725 %F JEMS_2017_19_9_a1
David Eisenbud; Daniel Erman. Categorified duality in Boij–Söderberg theory and invariants of free complexes. Journal of the European Mathematical Society, Tome 19 (2017) no. 9, pp. 2657-2695. doi: 10.4171/jems/725
Cité par Sources :