Categorified duality in Boij–Söderberg theory and invariants of free complexes
Journal of the European Mathematical Society, Tome 19 (2017) no. 9, pp. 2657-2695.

Voir la notice de l'article provenant de la source EMS Press

We present a robust categorical foundation for the duality theory introduced by Eisenbud and Schreyer to prove the Boij–Söderberg conjectures describing numerical invariants of syzygies. The new foundation allows us to extend the reach of the theory substantially.
DOI : 10.4171/jems/725
Classification : 13-XX, 14-XX
Keywords: Syzygies, Betti tables, sheaf of cohomology
@article{JEMS_2017_19_9_a1,
     author = {David Eisenbud and Daniel Erman},
     title = {Categorified duality in {Boij{\textendash}S\"oderberg} theory and invariants of free complexes},
     journal = {Journal of the European Mathematical Society},
     pages = {2657--2695},
     publisher = {mathdoc},
     volume = {19},
     number = {9},
     year = {2017},
     doi = {10.4171/jems/725},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/725/}
}
TY  - JOUR
AU  - David Eisenbud
AU  - Daniel Erman
TI  - Categorified duality in Boij–Söderberg theory and invariants of free complexes
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2657
EP  - 2695
VL  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/725/
DO  - 10.4171/jems/725
ID  - JEMS_2017_19_9_a1
ER  - 
%0 Journal Article
%A David Eisenbud
%A Daniel Erman
%T Categorified duality in Boij–Söderberg theory and invariants of free complexes
%J Journal of the European Mathematical Society
%D 2017
%P 2657-2695
%V 19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/725/
%R 10.4171/jems/725
%F JEMS_2017_19_9_a1
David Eisenbud; Daniel Erman. Categorified duality in Boij–Söderberg theory and invariants of free complexes. Journal of the European Mathematical Society, Tome 19 (2017) no. 9, pp. 2657-2695. doi : 10.4171/jems/725. http://geodesic.mathdoc.fr/articles/10.4171/jems/725/

Cité par Sources :