Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$
Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2521-2575
Cet article a éte moissonné depuis la source EMS Press
We consider the energy-critical defocusing nonlinear wave equation (NLW) on Rd, d=4 and 5. We prove almost sure global existence and uniqueness for NLW with rough random initial data in Hs(Rd)×Hs−1(Rd), with 0≤1 if d=4, and 0≤s≤1 if d=5. The randomization we consider is naturally associated with the Wiener decomposition and with modulation spaces. The proof is based on a probabilistic perturbation theory. Under some additional assumptions, for d=4, we also prove the probabilistic continuous dependence of the flow with respect to the initial data (in the sense proposed by Burq and Tzvetkov).
Classification :
35-XX
Keywords: Nonlinear wave equations, almost sure well-posedness, probabilistic continuous dependence, Wiener decomposition
Keywords: Nonlinear wave equations, almost sure well-posedness, probabilistic continuous dependence, Wiener decomposition
@article{JEMS_2017_19_8_a7,
author = {Oana Pocovnicu},
title = {Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$},
journal = {Journal of the European Mathematical Society},
pages = {2521--2575},
year = {2017},
volume = {19},
number = {8},
doi = {10.4171/jems/723},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/723/}
}
TY - JOUR AU - Oana Pocovnicu TI - Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$ JO - Journal of the European Mathematical Society PY - 2017 SP - 2521 EP - 2575 VL - 19 IS - 8 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/723/ DO - 10.4171/jems/723 ID - JEMS_2017_19_8_a7 ER -
%0 Journal Article %A Oana Pocovnicu %T Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$ %J Journal of the European Mathematical Society %D 2017 %P 2521-2575 %V 19 %N 8 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/723/ %R 10.4171/jems/723 %F JEMS_2017_19_8_a7
Oana Pocovnicu. Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$. Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2521-2575. doi: 10.4171/jems/723
Cité par Sources :