Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$
Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2521-2575.

Voir la notice de l'article provenant de la source EMS Press

We consider the energy-critical defocusing nonlinear wave equation (NLW) on Rd, d=4 and 5. We prove almost sure global existence and uniqueness for NLW with rough random initial data in Hs(Rd)×Hs−1(Rd), with 0≤1 if d=4, and 0≤s≤1 if d=5. The randomization we consider is naturally associated with the Wiener decomposition and with modulation spaces. The proof is based on a probabilistic perturbation theory. Under some additional assumptions, for d=4, we also prove the probabilistic continuous dependence of the flow with respect to the initial data (in the sense proposed by Burq and Tzvetkov).
DOI : 10.4171/jems/723
Classification : 35-XX
Keywords: Nonlinear wave equations, almost sure well-posedness, probabilistic continuous dependence, Wiener decomposition
@article{JEMS_2017_19_8_a7,
     author = {Oana Pocovnicu},
     title = {Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$},
     journal = {Journal of the European Mathematical Society},
     pages = {2521--2575},
     publisher = {mathdoc},
     volume = {19},
     number = {8},
     year = {2017},
     doi = {10.4171/jems/723},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/723/}
}
TY  - JOUR
AU  - Oana Pocovnicu
TI  - Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2521
EP  - 2575
VL  - 19
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/723/
DO  - 10.4171/jems/723
ID  - JEMS_2017_19_8_a7
ER  - 
%0 Journal Article
%A Oana Pocovnicu
%T Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$
%J Journal of the European Mathematical Society
%D 2017
%P 2521-2575
%V 19
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/723/
%R 10.4171/jems/723
%F JEMS_2017_19_8_a7
Oana Pocovnicu. Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$. Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2521-2575. doi : 10.4171/jems/723. http://geodesic.mathdoc.fr/articles/10.4171/jems/723/

Cité par Sources :