Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups
Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2469-2519.

Voir la notice de l'article provenant de la source EMS Press

Let X=G/B be the full flag variety associated to a symmetrizable Kac–Moody group G. Let T be the maximal torus of G. The T-equivariant K-theory of X has a certain natural basis defined as the dual of the structure sheaves of the finite-dimensional Schubert varieties. We show that under this basis, the structure constants are polynomials with nonnegative coefficients. This result in the finite case was obtained by Anderson–Griffeth–Miller (following a conjecture by Graham–Kumar).
DOI : 10.4171/jems/722
Classification : 20-XX, 19-XX
Keywords: Kac–Moody groups, flag varieties, equivariant K-theory, positivity
@article{JEMS_2017_19_8_a6,
     author = {Shrawan Kumar},
     title = {Positivity in $T$-equivariant $K$-theory of flag varieties associated to {Kac{\textendash}Moody} groups},
     journal = {Journal of the European Mathematical Society},
     pages = {2469--2519},
     publisher = {mathdoc},
     volume = {19},
     number = {8},
     year = {2017},
     doi = {10.4171/jems/722},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/722/}
}
TY  - JOUR
AU  - Shrawan Kumar
TI  - Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2469
EP  - 2519
VL  - 19
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/722/
DO  - 10.4171/jems/722
ID  - JEMS_2017_19_8_a6
ER  - 
%0 Journal Article
%A Shrawan Kumar
%T Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups
%J Journal of the European Mathematical Society
%D 2017
%P 2469-2519
%V 19
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/722/
%R 10.4171/jems/722
%F JEMS_2017_19_8_a6
Shrawan Kumar. Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups. Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2469-2519. doi : 10.4171/jems/722. http://geodesic.mathdoc.fr/articles/10.4171/jems/722/

Cité par Sources :