Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups
Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2469-2519
Cet article a éte moissonné depuis la source EMS Press
Let X=G/B be the full flag variety associated to a symmetrizable Kac–Moody group G. Let T be the maximal torus of G. The T-equivariant K-theory of X has a certain natural basis defined as the dual of the structure sheaves of the finite-dimensional Schubert varieties. We show that under this basis, the structure constants are polynomials with nonnegative coefficients. This result in the finite case was obtained by Anderson–Griffeth–Miller (following a conjecture by Graham–Kumar).
Classification :
20-XX, 19-XX
Keywords: Kac–Moody groups, flag varieties, equivariant K-theory, positivity
Keywords: Kac–Moody groups, flag varieties, equivariant K-theory, positivity
@article{JEMS_2017_19_8_a6,
author = {Shrawan Kumar},
title = {Positivity in $T$-equivariant $K$-theory of flag varieties associated to {Kac{\textendash}Moody} groups},
journal = {Journal of the European Mathematical Society},
pages = {2469--2519},
year = {2017},
volume = {19},
number = {8},
doi = {10.4171/jems/722},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/722/}
}
TY - JOUR AU - Shrawan Kumar TI - Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups JO - Journal of the European Mathematical Society PY - 2017 SP - 2469 EP - 2519 VL - 19 IS - 8 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/722/ DO - 10.4171/jems/722 ID - JEMS_2017_19_8_a6 ER -
%0 Journal Article %A Shrawan Kumar %T Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups %J Journal of the European Mathematical Society %D 2017 %P 2469-2519 %V 19 %N 8 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/722/ %R 10.4171/jems/722 %F JEMS_2017_19_8_a6
Shrawan Kumar. Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac–Moody groups. Journal of the European Mathematical Society, Tome 19 (2017) no. 8, pp. 2469-2519. doi: 10.4171/jems/722
Cité par Sources :