Existence of Gorenstein projective resolutions and Tate cohomology
Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 59-76.

Voir la notice de l'article provenant de la source EMS Press

Existence of proper Gorenstein projective resolutions and Tate cohomology is proved over rings with a dualizing complex. The proofs are based on Bousfield Localization which is originally a method from algebraic topology.
DOI : 10.4171/jems/72
Classification : 13-XX, 16-XX, 18-XX, 20-XX
Keywords: Dualizing complex, Gorenstein homological algebra, Gorenstein projective precover
@article{JEMS_2007_9_1_a2,
     author = {Peter J{\o}rgensen},
     title = {Existence of {Gorenstein} projective resolutions and {Tate} cohomology},
     journal = {Journal of the European Mathematical Society},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4171/jems/72},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/72/}
}
TY  - JOUR
AU  - Peter Jørgensen
TI  - Existence of Gorenstein projective resolutions and Tate cohomology
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 59
EP  - 76
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/72/
DO  - 10.4171/jems/72
ID  - JEMS_2007_9_1_a2
ER  - 
%0 Journal Article
%A Peter Jørgensen
%T Existence of Gorenstein projective resolutions and Tate cohomology
%J Journal of the European Mathematical Society
%D 2007
%P 59-76
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/72/
%R 10.4171/jems/72
%F JEMS_2007_9_1_a2
Peter Jørgensen. Existence of Gorenstein projective resolutions and Tate cohomology. Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 59-76. doi : 10.4171/jems/72. http://geodesic.mathdoc.fr/articles/10.4171/jems/72/

Cité par Sources :