Existence of Gorenstein projective resolutions and Tate cohomology
Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 59-76
Voir la notice de l'article provenant de la source EMS Press
Existence of proper Gorenstein projective resolutions and Tate cohomology is proved over rings with a dualizing complex. The proofs are based on Bousfield Localization which is originally a method from algebraic topology.
Classification :
13-XX, 16-XX, 18-XX, 20-XX
Keywords: Dualizing complex, Gorenstein homological algebra, Gorenstein projective precover
Keywords: Dualizing complex, Gorenstein homological algebra, Gorenstein projective precover
@article{JEMS_2007_9_1_a2,
author = {Peter J{\o}rgensen},
title = {Existence of {Gorenstein} projective resolutions and {Tate} cohomology},
journal = {Journal of the European Mathematical Society},
pages = {59--76},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2007},
doi = {10.4171/jems/72},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/72/}
}
TY - JOUR AU - Peter Jørgensen TI - Existence of Gorenstein projective resolutions and Tate cohomology JO - Journal of the European Mathematical Society PY - 2007 SP - 59 EP - 76 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/72/ DO - 10.4171/jems/72 ID - JEMS_2007_9_1_a2 ER -
Peter Jørgensen. Existence of Gorenstein projective resolutions and Tate cohomology. Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 59-76. doi: 10.4171/jems/72
Cité par Sources :