The family Floer functor is faithful
Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2139-2217.

Voir la notice de l'article provenant de la source EMS Press

Family Floer theory is used to construct a functor from the Fukaya category of a symplectic manifold admitting a Lagrangian torus fibration to a (twisted) category of perfect complexes on the mirror rigid analytic space. This functor is shown to be faithful by a degeneration argument involving moduli spaces of annuli.
DOI : 10.4171/jems/715
Classification : 53-XX, 14-XX
Keywords: Floer homology, Lagrangian torus fibration, rigid analytic spaces, coherent sheaves, homological mirror symmetry
@article{JEMS_2017_19_7_a6,
     author = {Mohammed Abouzaid},
     title = {The family {Floer} functor is faithful},
     journal = {Journal of the European Mathematical Society},
     pages = {2139--2217},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2017},
     doi = {10.4171/jems/715},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/715/}
}
TY  - JOUR
AU  - Mohammed Abouzaid
TI  - The family Floer functor is faithful
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2139
EP  - 2217
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/715/
DO  - 10.4171/jems/715
ID  - JEMS_2017_19_7_a6
ER  - 
%0 Journal Article
%A Mohammed Abouzaid
%T The family Floer functor is faithful
%J Journal of the European Mathematical Society
%D 2017
%P 2139-2217
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/715/
%R 10.4171/jems/715
%F JEMS_2017_19_7_a6
Mohammed Abouzaid. The family Floer functor is faithful. Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2139-2217. doi : 10.4171/jems/715. http://geodesic.mathdoc.fr/articles/10.4171/jems/715/

Cité par Sources :