The family Floer functor is faithful
Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2139-2217
Cet article a éte moissonné depuis la source EMS Press
Family Floer theory is used to construct a functor from the Fukaya category of a symplectic manifold admitting a Lagrangian torus fibration to a (twisted) category of perfect complexes on the mirror rigid analytic space. This functor is shown to be faithful by a degeneration argument involving moduli spaces of annuli.
Classification :
53-XX, 14-XX
Keywords: Floer homology, Lagrangian torus fibration, rigid analytic spaces, coherent sheaves, homological mirror symmetry
Keywords: Floer homology, Lagrangian torus fibration, rigid analytic spaces, coherent sheaves, homological mirror symmetry
@article{JEMS_2017_19_7_a6,
author = {Mohammed Abouzaid},
title = {The family {Floer} functor is faithful},
journal = {Journal of the European Mathematical Society},
pages = {2139--2217},
year = {2017},
volume = {19},
number = {7},
doi = {10.4171/jems/715},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/715/}
}
Mohammed Abouzaid. The family Floer functor is faithful. Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2139-2217. doi: 10.4171/jems/715
Cité par Sources :