Hilbert's Tenth Problem over function fields of positive characteristic not containing the algebraic closure of a finite field
Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2103-2138
Cet article a éte moissonné depuis la source EMS Press
We prove that the existential theory of any function field K of characteristic p>0 is undecidable in the language of rings augmented by constant symbols for the elements of a suitable recursive subfield, provided that the constant field does not contain the algebraic closure of a finite field. This theorem is the natural generalization of a theorem of Kim and Roush from 1992. We also extend our previous undecidability proof for function fields of higher transcendence degree to characteristic 2 and show that the first-order theory of any function field of positive characteristic is undecidable in the language of rings without parameters.
Classification :
11-XX, 03-XX
Keywords: Undecidability, Hilbert's Tenth Problem
Keywords: Undecidability, Hilbert's Tenth Problem
@article{JEMS_2017_19_7_a5,
author = {Kirsten Eisentr\"ager and Alexandra Shlapentokh},
title = {Hilbert's {Tenth} {Problem} over function fields of positive characteristic not containing the algebraic closure of a finite field},
journal = {Journal of the European Mathematical Society},
pages = {2103--2138},
year = {2017},
volume = {19},
number = {7},
doi = {10.4171/jems/714},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/714/}
}
TY - JOUR AU - Kirsten Eisenträger AU - Alexandra Shlapentokh TI - Hilbert's Tenth Problem over function fields of positive characteristic not containing the algebraic closure of a finite field JO - Journal of the European Mathematical Society PY - 2017 SP - 2103 EP - 2138 VL - 19 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/714/ DO - 10.4171/jems/714 ID - JEMS_2017_19_7_a5 ER -
%0 Journal Article %A Kirsten Eisenträger %A Alexandra Shlapentokh %T Hilbert's Tenth Problem over function fields of positive characteristic not containing the algebraic closure of a finite field %J Journal of the European Mathematical Society %D 2017 %P 2103-2138 %V 19 %N 7 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/714/ %R 10.4171/jems/714 %F JEMS_2017_19_7_a5
Kirsten Eisenträger; Alexandra Shlapentokh. Hilbert's Tenth Problem over function fields of positive characteristic not containing the algebraic closure of a finite field. Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2103-2138. doi: 10.4171/jems/714
Cité par Sources :