Higher genus quasimap wall-crossing for semipositive targets
Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2051-2102
Cet article a éte moissonné depuis la source EMS Press
In previous work we have conjectured wall-crossing formulas for genus zero quasimap invariants of GIT quotients and proved them via localization in many cases. We extend these formulas to higher genus when the target is semipositive, and prove them for semipositive toric varieties, in particular for toric local Calabi–Yau targets. The proof also applies to local Calabi–Yau's associated to some nonabelian quotients.
Classification :
14-XX
Keywords: Gromov–Witten invariants, quasimap invariants, mirror symmetry
Keywords: Gromov–Witten invariants, quasimap invariants, mirror symmetry
@article{JEMS_2017_19_7_a4,
author = {Ionu\c{t} Ciocan-Fontanine and Bumsig Kim},
title = {Higher genus quasimap wall-crossing for semipositive targets},
journal = {Journal of the European Mathematical Society},
pages = {2051--2102},
year = {2017},
volume = {19},
number = {7},
doi = {10.4171/jems/713},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/713/}
}
TY - JOUR AU - Ionuţ Ciocan-Fontanine AU - Bumsig Kim TI - Higher genus quasimap wall-crossing for semipositive targets JO - Journal of the European Mathematical Society PY - 2017 SP - 2051 EP - 2102 VL - 19 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/713/ DO - 10.4171/jems/713 ID - JEMS_2017_19_7_a4 ER -
%0 Journal Article %A Ionuţ Ciocan-Fontanine %A Bumsig Kim %T Higher genus quasimap wall-crossing for semipositive targets %J Journal of the European Mathematical Society %D 2017 %P 2051-2102 %V 19 %N 7 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/713/ %R 10.4171/jems/713 %F JEMS_2017_19_7_a4
Ionuţ Ciocan-Fontanine; Bumsig Kim. Higher genus quasimap wall-crossing for semipositive targets. Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2051-2102. doi: 10.4171/jems/713
Cité par Sources :