Higher genus quasimap wall-crossing for semipositive targets
Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2051-2102.

Voir la notice de l'article provenant de la source EMS Press

In previous work we have conjectured wall-crossing formulas for genus zero quasimap invariants of GIT quotients and proved them via localization in many cases. We extend these formulas to higher genus when the target is semipositive, and prove them for semipositive toric varieties, in particular for toric local Calabi–Yau targets. The proof also applies to local Calabi–Yau's associated to some nonabelian quotients.
DOI : 10.4171/jems/713
Classification : 14-XX
Keywords: Gromov–Witten invariants, quasimap invariants, mirror symmetry
@article{JEMS_2017_19_7_a4,
     author = {Ionu\c{t} Ciocan-Fontanine and Bumsig Kim},
     title = {Higher genus quasimap wall-crossing for semipositive targets},
     journal = {Journal of the European Mathematical Society},
     pages = {2051--2102},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2017},
     doi = {10.4171/jems/713},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/713/}
}
TY  - JOUR
AU  - Ionuţ Ciocan-Fontanine
AU  - Bumsig Kim
TI  - Higher genus quasimap wall-crossing for semipositive targets
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 2051
EP  - 2102
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/713/
DO  - 10.4171/jems/713
ID  - JEMS_2017_19_7_a4
ER  - 
%0 Journal Article
%A Ionuţ Ciocan-Fontanine
%A Bumsig Kim
%T Higher genus quasimap wall-crossing for semipositive targets
%J Journal of the European Mathematical Society
%D 2017
%P 2051-2102
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/713/
%R 10.4171/jems/713
%F JEMS_2017_19_7_a4
Ionuţ Ciocan-Fontanine; Bumsig Kim. Higher genus quasimap wall-crossing for semipositive targets. Journal of the European Mathematical Society, Tome 19 (2017) no. 7, pp. 2051-2102. doi : 10.4171/jems/713. http://geodesic.mathdoc.fr/articles/10.4171/jems/713/

Cité par Sources :