The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1845-1897.

Voir la notice de l'article provenant de la source EMS Press

This article investigates matrix convex sets. It introduces tracial analogs, which we call contractively tracial convex sets. Critical in both contexts are completely positive (cp) maps. While unital cp maps tie into matrix convex sets, trace preserving cp (CPTP) maps tie into contractively tracial sets. CPTP maps are sometimes called quantum channels and are central to quantum information theory.
DOI : 10.4171/jems/707
Classification : 14-XX, 47-XX, 90-XX
Keywords: Linear matrix inequality (LMI), polar dual, LMI domain, spectrahedron, spectrahedrop, convex hull, free real algebraic geometry, noncommutative polynomial, cp interpolation, quantum channel, tracial hull, tracial Hahn–Banach theorem
@article{JEMS_2017_19_6_a5,
     author = {J. William Helton and Igor Klep and Scott McCullough},
     title = {The tracial {Hahn{\textendash}Banach} theorem, polar duals, matrix convex sets, and projections of free spectrahedra},
     journal = {Journal of the European Mathematical Society},
     pages = {1845--1897},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2017},
     doi = {10.4171/jems/707},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/707/}
}
TY  - JOUR
AU  - J. William Helton
AU  - Igor Klep
AU  - Scott McCullough
TI  - The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1845
EP  - 1897
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/707/
DO  - 10.4171/jems/707
ID  - JEMS_2017_19_6_a5
ER  - 
%0 Journal Article
%A J. William Helton
%A Igor Klep
%A Scott McCullough
%T The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra
%J Journal of the European Mathematical Society
%D 2017
%P 1845-1897
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/707/
%R 10.4171/jems/707
%F JEMS_2017_19_6_a5
J. William Helton; Igor Klep; Scott McCullough. The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1845-1897. doi : 10.4171/jems/707. http://geodesic.mathdoc.fr/articles/10.4171/jems/707/

Cité par Sources :