A semi-algebraic version of Zarankiewicz's problem
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1785-1810
Cet article a éte moissonné depuis la source EMS Press
A bipartite graph G is semi-algebraic in Rd if its vertices are represented by point sets P,Q⊂Rd and its edges are defined as pairs of points (p,q)∈P×Q that satisfy a Boolean combination of a fixed number of polynomial equations and inequalities in 2d coordinates. We show that for fixed k, the maximum number of edges in a Kk,k-free semi-algebraic bipartite graph G=(P,Q,E) in R2 with ∣P∣=m and ∣Q∣=n is at most O((mn)2/3+m+n), and this bound is tight. In dimensions d≥3, we show that all such semi-algebraic graphs have at most C((mn)d+1d+ε+m+n) edges, where here ε is an arbitrarily small constant and C=C(d,k,t,ε). This result is a far-reaching generalization of the classical Szemerédi-Trotter incidence theorem. The proof combines tools from several fields: VC-dimension and shatter functions, polynomial partitioning, and Hilbert polynomials.
Classification :
05-XX, 52-XX
Keywords: Semi-algebraic graph, extremal graph theory, VC-dimension, polynomial partitioning, incidences
Keywords: Semi-algebraic graph, extremal graph theory, VC-dimension, polynomial partitioning, incidences
@article{JEMS_2017_19_6_a3,
author = {Jacob Fox and J\'anos Pach and Adam Sheffer and Andrew Suk and Joshua Zahl},
title = {A semi-algebraic version of {Zarankiewicz's} problem},
journal = {Journal of the European Mathematical Society},
pages = {1785--1810},
year = {2017},
volume = {19},
number = {6},
doi = {10.4171/jems/705},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/705/}
}
TY - JOUR AU - Jacob Fox AU - János Pach AU - Adam Sheffer AU - Andrew Suk AU - Joshua Zahl TI - A semi-algebraic version of Zarankiewicz's problem JO - Journal of the European Mathematical Society PY - 2017 SP - 1785 EP - 1810 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/705/ DO - 10.4171/jems/705 ID - JEMS_2017_19_6_a3 ER -
%0 Journal Article %A Jacob Fox %A János Pach %A Adam Sheffer %A Andrew Suk %A Joshua Zahl %T A semi-algebraic version of Zarankiewicz's problem %J Journal of the European Mathematical Society %D 2017 %P 1785-1810 %V 19 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/705/ %R 10.4171/jems/705 %F JEMS_2017_19_6_a3
Jacob Fox; János Pach; Adam Sheffer; Andrew Suk; Joshua Zahl. A semi-algebraic version of Zarankiewicz's problem. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1785-1810. doi: 10.4171/jems/705
Cité par Sources :