Pointwise convergence of Fourier series (I). On a conjecture of Konyagin
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1655-1728
Voir la notice de l'article provenant de la source EMS Press
We provide a near-complete classification of the Lorentz spaces Λφ for which the sequence {Sn}n∈N of partial Fourier sums is almost everywhere convergent along lacunary subsequences. Moreover, under mild assumptions on the fundamental function φ, we identify Λφ:=L log log L log log log log L as the largest Lorentz space on which the lacunary Carleson operator is bounded as a map to L1,∞. As a consequence, we
Classification :
42-XX, 46-XX
Keywords: Time-frequency analysis, Carleson's Theorem, lacunary subsequences, pointwise convergence
Keywords: Time-frequency analysis, Carleson's Theorem, lacunary subsequences, pointwise convergence
@article{JEMS_2017_19_6_a1,
author = {Victor Lie},
title = {Pointwise convergence of {Fourier} series {(I).} {On} a conjecture of {Konyagin}},
journal = {Journal of the European Mathematical Society},
pages = {1655--1728},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2017},
doi = {10.4171/jems/703},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/703/}
}
TY - JOUR AU - Victor Lie TI - Pointwise convergence of Fourier series (I). On a conjecture of Konyagin JO - Journal of the European Mathematical Society PY - 2017 SP - 1655 EP - 1728 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/703/ DO - 10.4171/jems/703 ID - JEMS_2017_19_6_a1 ER -
Victor Lie. Pointwise convergence of Fourier series (I). On a conjecture of Konyagin. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1655-1728. doi: 10.4171/jems/703
Cité par Sources :