On the universal CH$_ 0$ group of cubic hypersurfaces
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1619-1653.

Voir la notice de l'article provenant de la source EMS Press

We study the existence of a Chow-theoretic decomposition of the diagonal of a smooth cubic hypersurface, or equivalently, the universal triviality of its CH0​ group. We prove that for odd-dimensional cubic hypersurfaces or for cubic fourfolds, this is equivalent to the existence of a cohomological decomposition of the diagonal, and we translate geometrically this last condition. For cubic threefolds X, this turns out to be equivalent to the algebraicity of the minimal class θ4/4! of the intermediate Jacobian J(X). In dimension 4, we show that a special cubic fourfold with discriminant not divisible by 4 has universally trivial CH0​ group.
DOI : 10.4171/jems/702
Classification : 14-XX
Keywords: Cubic hypersurfaces, decomposition of the diagonal, stable rationality
@article{JEMS_2017_19_6_a0,
     author = {Claire Voisin},
     title = {On the universal {CH}$_ 0$  group of cubic hypersurfaces},
     journal = {Journal of the European Mathematical Society},
     pages = {1619--1653},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2017},
     doi = {10.4171/jems/702},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/702/}
}
TY  - JOUR
AU  - Claire Voisin
TI  - On the universal CH$_ 0$  group of cubic hypersurfaces
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1619
EP  - 1653
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/702/
DO  - 10.4171/jems/702
ID  - JEMS_2017_19_6_a0
ER  - 
%0 Journal Article
%A Claire Voisin
%T On the universal CH$_ 0$  group of cubic hypersurfaces
%J Journal of the European Mathematical Society
%D 2017
%P 1619-1653
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/702/
%R 10.4171/jems/702
%F JEMS_2017_19_6_a0
Claire Voisin. On the universal CH$_ 0$  group of cubic hypersurfaces. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1619-1653. doi : 10.4171/jems/702. http://geodesic.mathdoc.fr/articles/10.4171/jems/702/

Cité par Sources :