Upper bounds for singular perturbation problems involving gradient fields
Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 1-43.

Voir la notice de l'article provenant de la source EMS Press

We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy Eε​(v)=ε∫Ω​​∇2v​2dx+ε1​∫Ω​(1−∣∇v∣2)2dx over v∈H2(Ω), where ε>0 is a small parameter. Given v∈W1,∞(Ω) such that ∇v∈BV and ∣∇v∣=1 a.e., we construct a family {vε​} satisfying: vε​→v in W1,p(Ω) and Eε​(vε​)→31​∫J∇v​​∣∇+v−∇−v∣3dHN−1, as ε goes to 0.
DOI : 10.4171/jems/70
Classification : 49-XX, 00-XX
Keywords:
@article{JEMS_2007_9_1_a0,
     author = {Arkady Poliakovsky},
     title = {Upper bounds for singular perturbation problems involving gradient fields},
     journal = {Journal of the European Mathematical Society},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4171/jems/70},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/70/}
}
TY  - JOUR
AU  - Arkady Poliakovsky
TI  - Upper bounds for singular perturbation problems involving gradient fields
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 1
EP  - 43
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/70/
DO  - 10.4171/jems/70
ID  - JEMS_2007_9_1_a0
ER  - 
%0 Journal Article
%A Arkady Poliakovsky
%T Upper bounds for singular perturbation problems involving gradient fields
%J Journal of the European Mathematical Society
%D 2007
%P 1-43
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/70/
%R 10.4171/jems/70
%F JEMS_2007_9_1_a0
Arkady Poliakovsky. Upper bounds for singular perturbation problems involving gradient fields. Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 1-43. doi : 10.4171/jems/70. http://geodesic.mathdoc.fr/articles/10.4171/jems/70/

Cité par Sources :