Upper bounds for singular perturbation problems involving gradient fields
Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 1-43
Voir la notice de l'article provenant de la source EMS Press
We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy Eε(v)=ε∫Ω∇2v2dx+ε1∫Ω(1−∣∇v∣2)2dx over v∈H2(Ω), where ε>0 is a small parameter. Given v∈W1,∞(Ω) such that ∇v∈BV and ∣∇v∣=1 a.e., we construct a family {vε} satisfying: vε→v in W1,p(Ω) and Eε(vε)→31∫J∇v∣∇+v−∇−v∣3dHN−1, as ε goes to 0.
@article{JEMS_2007_9_1_a0,
author = {Arkady Poliakovsky},
title = {Upper bounds for singular perturbation problems involving gradient fields},
journal = {Journal of the European Mathematical Society},
pages = {1--43},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2007},
doi = {10.4171/jems/70},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/70/}
}
TY - JOUR AU - Arkady Poliakovsky TI - Upper bounds for singular perturbation problems involving gradient fields JO - Journal of the European Mathematical Society PY - 2007 SP - 1 EP - 43 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/70/ DO - 10.4171/jems/70 ID - JEMS_2007_9_1_a0 ER -
Arkady Poliakovsky. Upper bounds for singular perturbation problems involving gradient fields. Journal of the European Mathematical Society, Tome 9 (2007) no. 1, pp. 1-43. doi: 10.4171/jems/70
Cité par Sources :