Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets
Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1545-1576
Cet article a éte moissonné depuis la source EMS Press
Let q be odd and squarefree, and let χq be the quadratic Dirichlet character of conductor q. Let uj be a Hecke–Maass cusp form on Γ0(q) with spectral parameter tj. By an extension of work of Conrey and Iwaniec, we show L(uj×χq,1/2)≪ε(q(1+∣tj∣))1/3+ε, uniformly in both q and tj. A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k. Furthermore, we show that ∣L(1/2+it,χq)∣≪ε((1+∣t∣)q)1/6+ε, improving on a result of Heath–Brown.
Classification :
11-XX
Keywords: Subconvexity, L-functions, equidistribution, Heegner points
Keywords: Subconvexity, L-functions, equidistribution, Heegner points
@article{JEMS_2017_19_5_a6,
author = {Matthew P. Young},
title = {Weyl-type hybrid subconvexity bounds for twisted $L$-functions and {Heegner} points on shrinking sets},
journal = {Journal of the European Mathematical Society},
pages = {1545--1576},
year = {2017},
volume = {19},
number = {5},
doi = {10.4171/jems/699},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/699/}
}
TY - JOUR AU - Matthew P. Young TI - Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets JO - Journal of the European Mathematical Society PY - 2017 SP - 1545 EP - 1576 VL - 19 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/699/ DO - 10.4171/jems/699 ID - JEMS_2017_19_5_a6 ER -
%0 Journal Article %A Matthew P. Young %T Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets %J Journal of the European Mathematical Society %D 2017 %P 1545-1576 %V 19 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/699/ %R 10.4171/jems/699 %F JEMS_2017_19_5_a6
Matthew P. Young. Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets. Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1545-1576. doi: 10.4171/jems/699
Cité par Sources :