Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets
Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1545-1576.

Voir la notice de l'article provenant de la source EMS Press

Let q be odd and squarefree, and let χq​ be the quadratic Dirichlet character of conductor q. Let uj​ be a Hecke–Maass cusp form on Γ0​(q) with spectral parameter tj​. By an extension of work of Conrey and Iwaniec, we show L(uj​×χq​,1/2)≪ε​(q(1+∣tj​∣))1/3+ε, uniformly in both q and tj​. A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k. Furthermore, we show that ∣L(1/2+it,χq​)∣≪ε​((1+∣t∣)q)1/6+ε, improving on a result of Heath–Brown.
DOI : 10.4171/jems/699
Classification : 11-XX
Keywords: Subconvexity, L-functions, equidistribution, Heegner points
@article{JEMS_2017_19_5_a6,
     author = {Matthew P. Young},
     title = {Weyl-type hybrid subconvexity bounds for twisted $L$-functions and {Heegner} points on shrinking sets},
     journal = {Journal of the European Mathematical Society},
     pages = {1545--1576},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2017},
     doi = {10.4171/jems/699},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/699/}
}
TY  - JOUR
AU  - Matthew P. Young
TI  - Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1545
EP  - 1576
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/699/
DO  - 10.4171/jems/699
ID  - JEMS_2017_19_5_a6
ER  - 
%0 Journal Article
%A Matthew P. Young
%T Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets
%J Journal of the European Mathematical Society
%D 2017
%P 1545-1576
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/699/
%R 10.4171/jems/699
%F JEMS_2017_19_5_a6
Matthew P. Young. Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets. Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1545-1576. doi : 10.4171/jems/699. http://geodesic.mathdoc.fr/articles/10.4171/jems/699/

Cité par Sources :