On the interval of fluctuation of the singular values of random matrices
Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1469-1505
Cet article a éte moissonné depuis la source EMS Press
Let A be a matrix whose columns X1,...,XN are independent random vectors in Rn. Assume that the tails of the 1-dimensional marginals decay as P(∣〈Xi,a〉∣≥t)≤Ct−p uniformly in a∈Sn−1 and i≤N. Then for p>4 we prove that with high probability A/n has the Restricted Isometry Property (RIP) provided that Euclidean norms ∣Xi∣ are concentrated around n. We also show that the covariance matrix is well approximated by empirical covariance matrices and establish corresponding quantitative estimates on the rate of convergence in terms of the ratio n/N. Moreover, we obtain sharp bounds for both problems when the decay is of the type exp (−tα), with α∈(0,2], extending the known case α∈(1,2].
Classification :
60-XX, 15-XX, 46-XX
Keywords: Random matrices, norm of random matrices, approximation of covariance matrices, compressed sensing, restricted isometry property, log-concave random vectors, concentration inequalities, deviation inequalities, heavy tails, spectrum, singular values, order statistics
Keywords: Random matrices, norm of random matrices, approximation of covariance matrices, compressed sensing, restricted isometry property, log-concave random vectors, concentration inequalities, deviation inequalities, heavy tails, spectrum, singular values, order statistics
@article{JEMS_2017_19_5_a4,
author = {Olivier Gu\'edon and Alexander E. Litvak and Alain Pajor and Nicole Tomczak-Jaegermann},
title = {On the interval of fluctuation of the singular values of random matrices},
journal = {Journal of the European Mathematical Society},
pages = {1469--1505},
year = {2017},
volume = {19},
number = {5},
doi = {10.4171/jems/697},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/697/}
}
TY - JOUR AU - Olivier Guédon AU - Alexander E. Litvak AU - Alain Pajor AU - Nicole Tomczak-Jaegermann TI - On the interval of fluctuation of the singular values of random matrices JO - Journal of the European Mathematical Society PY - 2017 SP - 1469 EP - 1505 VL - 19 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/697/ DO - 10.4171/jems/697 ID - JEMS_2017_19_5_a4 ER -
%0 Journal Article %A Olivier Guédon %A Alexander E. Litvak %A Alain Pajor %A Nicole Tomczak-Jaegermann %T On the interval of fluctuation of the singular values of random matrices %J Journal of the European Mathematical Society %D 2017 %P 1469-1505 %V 19 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/697/ %R 10.4171/jems/697 %F JEMS_2017_19_5_a4
Olivier Guédon; Alexander E. Litvak; Alain Pajor; Nicole Tomczak-Jaegermann. On the interval of fluctuation of the singular values of random matrices. Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1469-1505. doi: 10.4171/jems/697
Cité par Sources :