The effective cone of the moduli space of sheaves on the plane
Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1421-1467
Voir la notice de l'article provenant de la source EMS Press
Let ξ be the Chern character of a stable coherent sheaf on P2. We compute the cone of effective divisors on the moduli space M(ξ) of semistable sheaves on P2 with Chern character ξ. The computation hinges on finding a good resolution of the general sheaf in M(ξ). This resolution is determined by Bridgeland stability and arises from a well-chosen Beilinson spectral sequence. The existence of a good choice of spectral sequence depends on remarkable number-theoretic properties of the slopes of exceptional bundles.
Classification :
14-XX, 13-XX
Keywords: Moduli spaces of sheaves, Bridgeland stability, effective cone, Brill–Noether divisors
Keywords: Moduli spaces of sheaves, Bridgeland stability, effective cone, Brill–Noether divisors
@article{JEMS_2017_19_5_a3,
author = {Izzet Coskun and Jack Huizenga and Matthew Woolf},
title = {The effective cone of the moduli space of sheaves on the plane},
journal = {Journal of the European Mathematical Society},
pages = {1421--1467},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {2017},
doi = {10.4171/jems/696},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/696/}
}
TY - JOUR AU - Izzet Coskun AU - Jack Huizenga AU - Matthew Woolf TI - The effective cone of the moduli space of sheaves on the plane JO - Journal of the European Mathematical Society PY - 2017 SP - 1421 EP - 1467 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/696/ DO - 10.4171/jems/696 ID - JEMS_2017_19_5_a3 ER -
%0 Journal Article %A Izzet Coskun %A Jack Huizenga %A Matthew Woolf %T The effective cone of the moduli space of sheaves on the plane %J Journal of the European Mathematical Society %D 2017 %P 1421-1467 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/696/ %R 10.4171/jems/696 %F JEMS_2017_19_5_a3
Izzet Coskun; Jack Huizenga; Matthew Woolf. The effective cone of the moduli space of sheaves on the plane. Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1421-1467. doi: 10.4171/jems/696
Cité par Sources :