Linear groups with Borel's property
Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1293-1330.

Voir la notice de l'article provenant de la source EMS Press

When does Borel’s theorem on free subgroups of semisimple groups generalize to other groups? We initiate a systematic study of this question and find positive and negative answers for it. In particular, we fully classify fundamental groups of surfaces and von Dyck groups that satisfy Borel’s theorem. Further, as a byproduct of this theory, we make headway on a question of Breuillard, Green, Guralnick, and Tao concerning double word maps.
DOI : 10.4171/jems/693
Classification : 20-XX
Keywords: Free groups, linear groups, Borel's property
@article{JEMS_2017_19_5_a0,
     author = {Khalil Bou-Rabee and Michael Larsen},
     title = {Linear groups with {Borel's} property},
     journal = {Journal of the European Mathematical Society},
     pages = {1293--1330},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2017},
     doi = {10.4171/jems/693},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/693/}
}
TY  - JOUR
AU  - Khalil Bou-Rabee
AU  - Michael Larsen
TI  - Linear groups with Borel's property
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1293
EP  - 1330
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/693/
DO  - 10.4171/jems/693
ID  - JEMS_2017_19_5_a0
ER  - 
%0 Journal Article
%A Khalil Bou-Rabee
%A Michael Larsen
%T Linear groups with Borel's property
%J Journal of the European Mathematical Society
%D 2017
%P 1293-1330
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/693/
%R 10.4171/jems/693
%F JEMS_2017_19_5_a0
Khalil Bou-Rabee; Michael Larsen. Linear groups with Borel's property. Journal of the European Mathematical Society, Tome 19 (2017) no. 5, pp. 1293-1330. doi : 10.4171/jems/693. http://geodesic.mathdoc.fr/articles/10.4171/jems/693/

Cité par Sources :