A quasiconformal composition problem for the $Q$-spaces
Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 1159-1187.

Voir la notice de l'article provenant de la source EMS Press

Given a quasiconformal mapping f:Rn→Rn with n≥2, we show that (un-)boundedness of the composition operator Cf​ on the spaces Qα​(Rn) depends on the index α and the degeneracy set of the Jacobian Jf​. We establish sharp results in terms of the index α and the local/global self-similar Minkowski dimension of the degeneracy set of Jf​. This gives a solution to [3, Problem 8.4] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel–Lizorkin and Besov spaces. Consequently, Tukia–Väisälä's quasiconformal extension f:Rn→Rn of an arbitrary quasisymmetric mapping g:Rn−p→Rn−p is shown to preserve Qα​(Rn) for any (α,p)∈(0,1)×[2,n)∪(0,1/2)×{1}. Moreover, Qα​(Rn) is shown to be invariant under inversions for all 01.
DOI : 10.4171/jems/690
Classification : 42-XX, 30-XX, 46-XX, 47-XX
Keywords: Quasiconformal mappings, compositions, Q-spaces
@article{JEMS_2017_19_4_a6,
     author = {Pekka Koskela and Jie Xiao and Yi Ru-Ya Zhang and Yuan Zhou},
     title = {A quasiconformal composition problem for the $Q$-spaces},
     journal = {Journal of the European Mathematical Society},
     pages = {1159--1187},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     doi = {10.4171/jems/690},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/690/}
}
TY  - JOUR
AU  - Pekka Koskela
AU  - Jie Xiao
AU  - Yi Ru-Ya Zhang
AU  - Yuan Zhou
TI  - A quasiconformal composition problem for the $Q$-spaces
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1159
EP  - 1187
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/690/
DO  - 10.4171/jems/690
ID  - JEMS_2017_19_4_a6
ER  - 
%0 Journal Article
%A Pekka Koskela
%A Jie Xiao
%A Yi Ru-Ya Zhang
%A Yuan Zhou
%T A quasiconformal composition problem for the $Q$-spaces
%J Journal of the European Mathematical Society
%D 2017
%P 1159-1187
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/690/
%R 10.4171/jems/690
%F JEMS_2017_19_4_a6
Pekka Koskela; Jie Xiao; Yi Ru-Ya Zhang; Yuan Zhou. A quasiconformal composition problem for the $Q$-spaces. Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 1159-1187. doi : 10.4171/jems/690. http://geodesic.mathdoc.fr/articles/10.4171/jems/690/

Cité par Sources :