A construction of the Deligne-Mumford orbifold
Journal of the European Mathematical Society, Tome 8 (2006) no. 4, pp. 611-699
Voir la notice de l'article provenant de la source EMS Press
The Deligne–Mumford moduli space is the space Mg,n of isomorphism classes of stable nodal Riemann surfaces of arithmetic genus g with n marked points. A marked nodal Riemann surface is stable if and only if its isomorphism group is finite. We introduce the notion of a universal unfolding of a marked nodal Riemann surface and show that it exists if and only if the surface is stable. A natural construction based on the existence of universal unfoldings endows the Deligne–Mumford moduli space with an orbifold structure. We include a proof of compactness. Our proofs use the methods of differential geometry rather than algebraic geometry.
Classification :
58-XX, 00-XX
Keywords: Stable curves, Teichmüller theory, Deligne-Mumford orbifolds
Keywords: Stable curves, Teichmüller theory, Deligne-Mumford orbifolds
@article{JEMS_2006_8_4_a2,
author = {Joel W. Robbin and Dietmar A. Salamon},
title = {A construction of the {Deligne-Mumford} orbifold},
journal = {Journal of the European Mathematical Society},
pages = {611--699},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2006},
doi = {10.4171/jems/69},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/69/}
}
TY - JOUR AU - Joel W. Robbin AU - Dietmar A. Salamon TI - A construction of the Deligne-Mumford orbifold JO - Journal of the European Mathematical Society PY - 2006 SP - 611 EP - 699 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/69/ DO - 10.4171/jems/69 ID - JEMS_2006_8_4_a2 ER -
Joel W. Robbin; Dietmar A. Salamon. A construction of the Deligne-Mumford orbifold. Journal of the European Mathematical Society, Tome 8 (2006) no. 4, pp. 611-699. doi: 10.4171/jems/69
Cité par Sources :