A construction of the Deligne-Mumford orbifold
Journal of the European Mathematical Society, Tome 8 (2006) no. 4, pp. 611-699
Cet article a éte moissonné depuis la source EMS Press
The Deligne–Mumford moduli space is the space Mg,n of isomorphism classes of stable nodal Riemann surfaces of arithmetic genus g with n marked points. A marked nodal Riemann surface is stable if and only if its isomorphism group is finite. We introduce the notion of a universal unfolding of a marked nodal Riemann surface and show that it exists if and only if the surface is stable. A natural construction based on the existence of universal unfoldings endows the Deligne–Mumford moduli space with an orbifold structure. We include a proof of compactness. Our proofs use the methods of differential geometry rather than algebraic geometry.
Classification :
58-XX, 00-XX
Keywords: Stable curves, Teichmüller theory, Deligne-Mumford orbifolds
Keywords: Stable curves, Teichmüller theory, Deligne-Mumford orbifolds
@article{JEMS_2006_8_4_a2,
author = {Joel W. Robbin and Dietmar A. Salamon},
title = {A construction of the {Deligne-Mumford} orbifold},
journal = {Journal of the European Mathematical Society},
pages = {611--699},
year = {2006},
volume = {8},
number = {4},
doi = {10.4171/jems/69},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/69/}
}
TY - JOUR AU - Joel W. Robbin AU - Dietmar A. Salamon TI - A construction of the Deligne-Mumford orbifold JO - Journal of the European Mathematical Society PY - 2006 SP - 611 EP - 699 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/69/ DO - 10.4171/jems/69 ID - JEMS_2006_8_4_a2 ER -
Joel W. Robbin; Dietmar A. Salamon. A construction of the Deligne-Mumford orbifold. Journal of the European Mathematical Society, Tome 8 (2006) no. 4, pp. 611-699. doi: 10.4171/jems/69
Cité par Sources :