Homological projective duality via variation of geometric invariant theory quotients
Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 1127-1158.

Voir la notice de l'article provenant de la source EMS Press

We provide a geometric approach to constructing Lefschetz collections and Landau–Ginzburg homological projective duals from a variation of Geometric Invariant Theory quotients. This approach yields homological projective duals for Veronese embeddings in the setting of Landau–Ginzburg models. Our results also extend to a relative homological projective duality framework.
DOI : 10.4171/jems/689
Classification : 14-XX, 18-XX
Keywords: (Relative) homological projective duality, variation of Geometric Invariant Theory quotients, Landau–Ginzburg models
@article{JEMS_2017_19_4_a5,
     author = {Matthew Ballard and Dragos Deliu and David Favero and M. Umut Isik and Ludmil Katzarkov},
     title = {Homological projective duality via variation of geometric invariant theory quotients},
     journal = {Journal of the European Mathematical Society},
     pages = {1127--1158},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     doi = {10.4171/jems/689},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/689/}
}
TY  - JOUR
AU  - Matthew Ballard
AU  - Dragos Deliu
AU  - David Favero
AU  - M. Umut Isik
AU  - Ludmil Katzarkov
TI  - Homological projective duality via variation of geometric invariant theory quotients
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1127
EP  - 1158
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/689/
DO  - 10.4171/jems/689
ID  - JEMS_2017_19_4_a5
ER  - 
%0 Journal Article
%A Matthew Ballard
%A Dragos Deliu
%A David Favero
%A M. Umut Isik
%A Ludmil Katzarkov
%T Homological projective duality via variation of geometric invariant theory quotients
%J Journal of the European Mathematical Society
%D 2017
%P 1127-1158
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/689/
%R 10.4171/jems/689
%F JEMS_2017_19_4_a5
Matthew Ballard; Dragos Deliu; David Favero; M. Umut Isik; Ludmil Katzarkov. Homological projective duality via variation of geometric invariant theory quotients. Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 1127-1158. doi : 10.4171/jems/689. http://geodesic.mathdoc.fr/articles/10.4171/jems/689/

Cité par Sources :