Intrinsic scaling properties for nonlocal operators
Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 983-1011
Cet article a éte moissonné depuis la source EMS Press
We study integrodifferential operators and regularity estimates for solutions to integrodifferential equations. Our emphasis is on kernels with a critically low singularity which does not allow for standard scaling. For example, we treat operators that have a logarithmic order of differentiability. For corresponding equations we prove a growth lemma and derive a priori estimates. We derive these estimates by classical methods developed for partial differential operators. Since the integrodifferential operators under consideration generate Markov jump processes, we are able to offer an alternative approach using probabilistic techniques.
Classification :
35-XX, 31-XX, 47-XX, 60-XX
Keywords: Integrodifferential operators, regularity, jump processes, intrinsic scaling
Keywords: Integrodifferential operators, regularity, jump processes, intrinsic scaling
@article{JEMS_2017_19_4_a2,
author = {Moritz Kassmann and Ante Mimica},
title = {Intrinsic scaling properties for nonlocal operators},
journal = {Journal of the European Mathematical Society},
pages = {983--1011},
year = {2017},
volume = {19},
number = {4},
doi = {10.4171/jems/686},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/686/}
}
TY - JOUR AU - Moritz Kassmann AU - Ante Mimica TI - Intrinsic scaling properties for nonlocal operators JO - Journal of the European Mathematical Society PY - 2017 SP - 983 EP - 1011 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/686/ DO - 10.4171/jems/686 ID - JEMS_2017_19_4_a2 ER -
Moritz Kassmann; Ante Mimica. Intrinsic scaling properties for nonlocal operators. Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 983-1011. doi: 10.4171/jems/686
Cité par Sources :