All functions are locally $s$-harmonic up to a small error
Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 957-966
Cet article a éte moissonné depuis la source EMS Press
We show that we can approximate every function f∈Ck(B1) by an s-harmonic function in B1 that vanishes outside a compact set.
Classification :
35-XX, 34-XX, 60-XX
Keywords: Density properties, approximation, s-harmonic functions
Keywords: Density properties, approximation, s-harmonic functions
@article{JEMS_2017_19_4_a0,
author = {Serena Dipierro and Ovidiu Savin and Enrico Valdinoci},
title = {All functions are locally $s$-harmonic up to a small error},
journal = {Journal of the European Mathematical Society},
pages = {957--966},
year = {2017},
volume = {19},
number = {4},
doi = {10.4171/jems/684},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/684/}
}
TY - JOUR AU - Serena Dipierro AU - Ovidiu Savin AU - Enrico Valdinoci TI - All functions are locally $s$-harmonic up to a small error JO - Journal of the European Mathematical Society PY - 2017 SP - 957 EP - 966 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/684/ DO - 10.4171/jems/684 ID - JEMS_2017_19_4_a0 ER -
%0 Journal Article %A Serena Dipierro %A Ovidiu Savin %A Enrico Valdinoci %T All functions are locally $s$-harmonic up to a small error %J Journal of the European Mathematical Society %D 2017 %P 957-966 %V 19 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/684/ %R 10.4171/jems/684 %F JEMS_2017_19_4_a0
Serena Dipierro; Ovidiu Savin; Enrico Valdinoci. All functions are locally $s$-harmonic up to a small error. Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 957-966. doi: 10.4171/jems/684
Cité par Sources :