All functions are locally $s$-harmonic up to a small error
Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 957-966.

Voir la notice de l'article provenant de la source EMS Press

We show that we can approximate every function f∈Ck(B1​​) by an s-harmonic function in B1​ that vanishes outside a compact set.
DOI : 10.4171/jems/684
Classification : 35-XX, 34-XX, 60-XX
Keywords: Density properties, approximation, s-harmonic functions
@article{JEMS_2017_19_4_a0,
     author = {Serena Dipierro and Ovidiu Savin and Enrico Valdinoci},
     title = {All functions are locally $s$-harmonic up to a small error},
     journal = {Journal of the European Mathematical Society},
     pages = {957--966},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     doi = {10.4171/jems/684},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/684/}
}
TY  - JOUR
AU  - Serena Dipierro
AU  - Ovidiu Savin
AU  - Enrico Valdinoci
TI  - All functions are locally $s$-harmonic up to a small error
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 957
EP  - 966
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/684/
DO  - 10.4171/jems/684
ID  - JEMS_2017_19_4_a0
ER  - 
%0 Journal Article
%A Serena Dipierro
%A Ovidiu Savin
%A Enrico Valdinoci
%T All functions are locally $s$-harmonic up to a small error
%J Journal of the European Mathematical Society
%D 2017
%P 957-966
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/684/
%R 10.4171/jems/684
%F JEMS_2017_19_4_a0
Serena Dipierro; Ovidiu Savin; Enrico Valdinoci. All functions are locally $s$-harmonic up to a small error. Journal of the European Mathematical Society, Tome 19 (2017) no. 4, pp. 957-966. doi : 10.4171/jems/684. http://geodesic.mathdoc.fr/articles/10.4171/jems/684/

Cité par Sources :