Perturbations of geodesic flows by recurrent dynamics
Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 905-956
Cet article a éte moissonné depuis la source EMS Press
We present a mechanism for Arnold diffusion based on intertwining homoclinic orbits to a normally hyperbolic invariant manifold, followed for long time intervals, with orbits of the dynamics restricted to that manifold, followed for short time intervals. The resulting trajectories are rather fast, and their construction is explicit, so they can be used in concrete applications.
Classification :
37-XX
Keywords: Mather acceleration theorem, Arnold diffusion, shadowing
Keywords: Mather acceleration theorem, Arnold diffusion, shadowing
@article{JEMS_2017_19_3_a6,
author = {Marian Gidea and Rafael de la Llave},
title = {Perturbations of geodesic flows by recurrent dynamics},
journal = {Journal of the European Mathematical Society},
pages = {905--956},
year = {2017},
volume = {19},
number = {3},
doi = {10.4171/jems/683},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/683/}
}
TY - JOUR AU - Marian Gidea AU - Rafael de la Llave TI - Perturbations of geodesic flows by recurrent dynamics JO - Journal of the European Mathematical Society PY - 2017 SP - 905 EP - 956 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/683/ DO - 10.4171/jems/683 ID - JEMS_2017_19_3_a6 ER -
Marian Gidea; Rafael de la Llave. Perturbations of geodesic flows by recurrent dynamics. Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 905-956. doi: 10.4171/jems/683
Cité par Sources :