Perturbations of geodesic flows by recurrent dynamics
Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 905-956.

Voir la notice de l'article provenant de la source EMS Press

We present a mechanism for Arnold diffusion based on intertwining homoclinic orbits to a normally hyperbolic invariant manifold, followed for long time intervals, with orbits of the dynamics restricted to that manifold, followed for short time intervals. The resulting trajectories are rather fast, and their construction is explicit, so they can be used in concrete applications.
DOI : 10.4171/jems/683
Classification : 37-XX
Keywords: Mather acceleration theorem, Arnold diffusion, shadowing
@article{JEMS_2017_19_3_a6,
     author = {Marian Gidea and Rafael de la Llave},
     title = {Perturbations of geodesic flows by recurrent dynamics},
     journal = {Journal of the European Mathematical Society},
     pages = {905--956},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     doi = {10.4171/jems/683},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/683/}
}
TY  - JOUR
AU  - Marian Gidea
AU  - Rafael de la Llave
TI  - Perturbations of geodesic flows by recurrent dynamics
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 905
EP  - 956
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/683/
DO  - 10.4171/jems/683
ID  - JEMS_2017_19_3_a6
ER  - 
%0 Journal Article
%A Marian Gidea
%A Rafael de la Llave
%T Perturbations of geodesic flows by recurrent dynamics
%J Journal of the European Mathematical Society
%D 2017
%P 905-956
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/683/
%R 10.4171/jems/683
%F JEMS_2017_19_3_a6
Marian Gidea; Rafael de la Llave. Perturbations of geodesic flows by recurrent dynamics. Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 905-956. doi : 10.4171/jems/683. http://geodesic.mathdoc.fr/articles/10.4171/jems/683/

Cité par Sources :