Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikirić)
Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 659-723
Cet article a éte moissonné depuis la source EMS Press
The main purpose of this paper is to present a conceptual approach to understanding the extension of the Prym map from the space of admissible double covers of stable curves to different toroidal compactifications of the moduli space of principally polarized abelian varieties. By separating the combinatorial problems from the geometric aspects we can reduce this to the computation of certain monodromy cones. In this way we not only shed new light on the extension results of Alexeev, Birkenhake, Hulek, and Vologodsky for the second Voronoi toroidal compactification, but we also apply this to other toroidal compactifications, in particular the perfect cone compactification, for which we obtain a combinatorial characterization of the indeterminacy locus, as well as a geometric description up to codimension six, and an explicit toroidal resolution of the Prym map up to codimension four.
Classification :
14-XX
Keywords: Moduli, Prym varieties, period maps, abelian varieties
Keywords: Moduli, Prym varieties, period maps, abelian varieties
@article{JEMS_2017_19_3_a1,
author = {Sebastian Casalaina-Martin and Samuel Grushevsky and Klaus Hulek and Radu Laza},
title = {Extending the {Prym} map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by {Mathieu} {Dutour} {Sikiri\'c)}},
journal = {Journal of the European Mathematical Society},
pages = {659--723},
year = {2017},
volume = {19},
number = {3},
doi = {10.4171/jems/678},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/678/}
}
TY - JOUR AU - Sebastian Casalaina-Martin AU - Samuel Grushevsky AU - Klaus Hulek AU - Radu Laza TI - Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikirić) JO - Journal of the European Mathematical Society PY - 2017 SP - 659 EP - 723 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/678/ DO - 10.4171/jems/678 ID - JEMS_2017_19_3_a1 ER -
%0 Journal Article %A Sebastian Casalaina-Martin %A Samuel Grushevsky %A Klaus Hulek %A Radu Laza %T Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikirić) %J Journal of the European Mathematical Society %D 2017 %P 659-723 %V 19 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/678/ %R 10.4171/jems/678 %F JEMS_2017_19_3_a1
Sebastian Casalaina-Martin; Samuel Grushevsky; Klaus Hulek; Radu Laza. Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikirić). Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 659-723. doi: 10.4171/jems/678
Cité par Sources :