Singularities of the moduli space of level curves
Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 603-658
Cet article a éte moissonné depuis la source EMS Press
We describe the singular locus of the compactification of the moduli space Rg,l of curves of genus g paired with an l-torsion point in their Jacobian. Generalising previous work for l≤2, we also describe the sublocus of noncanonical singularities for any positive integer l. For g ≥ 4 and l = 3, 4, 6, this allows us to provide a lifting result on pluricanonical forms playing an essential role in the computation of the Kodaira dimension of Rg,l: for those values of l, every pluricanonical form on the smooth locus of the moduli space extends to a desingularisation of the compactified moduli space.
@article{JEMS_2017_19_3_a0,
author = {Alessandro Chiodo and Gavril Farkas},
title = {Singularities of the moduli space of level curves},
journal = {Journal of the European Mathematical Society},
pages = {603--658},
year = {2017},
volume = {19},
number = {3},
doi = {10.4171/jems/677},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/677/}
}
TY - JOUR AU - Alessandro Chiodo AU - Gavril Farkas TI - Singularities of the moduli space of level curves JO - Journal of the European Mathematical Society PY - 2017 SP - 603 EP - 658 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/677/ DO - 10.4171/jems/677 ID - JEMS_2017_19_3_a0 ER -
Alessandro Chiodo; Gavril Farkas. Singularities of the moduli space of level curves. Journal of the European Mathematical Society, Tome 19 (2017) no. 3, pp. 603-658. doi: 10.4171/jems/677
Cité par Sources :