Limits of Sobolev homeomorphisms
Journal of the European Mathematical Society, Tome 19 (2017) no. 2, pp. 473-505
Cet article a éte moissonné depuis la source EMS Press
Let X,Y∈R2 be topologically equivalent bounded Lipschitz domains. We prove that weak and strong limits of homeomorphisms h:X⟶ontoY in the Sobolev space W1,p(X,R2),p≥2, are the same. As an application, we establish the existence of 2D-traction free minimal deformations for fairly general energy integrals.
Classification :
30-XX, 46-XX, 58-XX
Keywords: Energy-minimal deformations, approximation of Sobolev homeomorphisms, variational integrals, harmonic mappings, p-harmonic equation
Keywords: Energy-minimal deformations, approximation of Sobolev homeomorphisms, variational integrals, harmonic mappings, p-harmonic equation
@article{JEMS_2017_19_2_a4,
author = {Tadeusz Iwaniec and Jani Onninen},
title = {Limits of {Sobolev} homeomorphisms},
journal = {Journal of the European Mathematical Society},
pages = {473--505},
year = {2017},
volume = {19},
number = {2},
doi = {10.4171/jems/671},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/671/}
}
Tadeusz Iwaniec; Jani Onninen. Limits of Sobolev homeomorphisms. Journal of the European Mathematical Society, Tome 19 (2017) no. 2, pp. 473-505. doi: 10.4171/jems/671
Cité par Sources :