Essential connectedness and the rigidity problem for Gaussian symmetrization
Journal of the European Mathematical Society, Tome 19 (2017) no. 2, pp. 395-439.

Voir la notice de l'article provenant de la source EMS Press

We provide a geometric characterization of rigidity of equality cases in Ehrhard's symmetrization inequality for Gaussian perimeter. This condition is formulated in terms of a new measure-theoretic notion of connectedness for Borel sets, inspired by Federer's definition of indecomposable current, and of possible broader interest.
DOI : 10.4171/jems/669
Classification : 49-XX
Keywords: Symmetrization, rigidity, equality cases, Gauss space
@article{JEMS_2017_19_2_a2,
     author = {Filippo Cagnetti and Maria Colombo and Guido De Philippis and Francesco Maggi},
     title = {Essential connectedness and the rigidity problem for {Gaussian} symmetrization},
     journal = {Journal of the European Mathematical Society},
     pages = {395--439},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     doi = {10.4171/jems/669},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/669/}
}
TY  - JOUR
AU  - Filippo Cagnetti
AU  - Maria Colombo
AU  - Guido De Philippis
AU  - Francesco Maggi
TI  - Essential connectedness and the rigidity problem for Gaussian symmetrization
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 395
EP  - 439
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/669/
DO  - 10.4171/jems/669
ID  - JEMS_2017_19_2_a2
ER  - 
%0 Journal Article
%A Filippo Cagnetti
%A Maria Colombo
%A Guido De Philippis
%A Francesco Maggi
%T Essential connectedness and the rigidity problem for Gaussian symmetrization
%J Journal of the European Mathematical Society
%D 2017
%P 395-439
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/669/
%R 10.4171/jems/669
%F JEMS_2017_19_2_a2
Filippo Cagnetti; Maria Colombo; Guido De Philippis; Francesco Maggi. Essential connectedness and the rigidity problem for Gaussian symmetrization. Journal of the European Mathematical Society, Tome 19 (2017) no. 2, pp. 395-439. doi : 10.4171/jems/669. http://geodesic.mathdoc.fr/articles/10.4171/jems/669/

Cité par Sources :