Hedetniemi's conjecture for uncountable graphs
Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 285-298
Cet article a éte moissonné depuis la source EMS Press
It is proved that in Gödel's constructible universe, for every infinite successor cardinal κ, there exist graphs G and H of size and chromatic number κ, for which the product graph G×H is countably chromatic.
Classification :
03-XX, 05-XX
Keywords: Hedetniemi's conjecture, product graph, almost countably chromatic, incompactness, constructible universe, Ostaszewski square
Keywords: Hedetniemi's conjecture, product graph, almost countably chromatic, incompactness, constructible universe, Ostaszewski square
@article{JEMS_2017_19_1_a6,
author = {Assaf Rinot},
title = {Hedetniemi's conjecture for uncountable graphs},
journal = {Journal of the European Mathematical Society},
pages = {285--298},
year = {2017},
volume = {19},
number = {1},
doi = {10.4171/jems/666},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/666/}
}
Assaf Rinot. Hedetniemi's conjecture for uncountable graphs. Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 285-298. doi: 10.4171/jems/666
Cité par Sources :