Compact homogeneous Riemannian manifolds with low coindex of symmetry
Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 221-254
Cet article a éte moissonné depuis la source EMS Press
We develop a general structure theory for compact homogeneous Riemannian manifolds in relation to the coindex of symmetry.We will then use these results to classify irreducible, simply connected, compact homogeneous Riemannian manifolds whose coindex of symmetry is less than or equal to three. We will also construct many examples which arise from the theory of polars and centrioles in Riemannian symmetric spaces of compact type.
Classification :
53-XX
Keywords: Compact homogeneous manifolds, symmetric spaces, index of symmetry, Killing fields, polars, centrioles
Keywords: Compact homogeneous manifolds, symmetric spaces, index of symmetry, Killing fields, polars, centrioles
@article{JEMS_2017_19_1_a4,
author = {J\"urgen Berndt and Carlos Olmos and Silvio Reggiani},
title = {Compact homogeneous {Riemannian} manifolds with low coindex of symmetry},
journal = {Journal of the European Mathematical Society},
pages = {221--254},
year = {2017},
volume = {19},
number = {1},
doi = {10.4171/jems/664},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/664/}
}
TY - JOUR AU - Jürgen Berndt AU - Carlos Olmos AU - Silvio Reggiani TI - Compact homogeneous Riemannian manifolds with low coindex of symmetry JO - Journal of the European Mathematical Society PY - 2017 SP - 221 EP - 254 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/664/ DO - 10.4171/jems/664 ID - JEMS_2017_19_1_a4 ER -
%0 Journal Article %A Jürgen Berndt %A Carlos Olmos %A Silvio Reggiani %T Compact homogeneous Riemannian manifolds with low coindex of symmetry %J Journal of the European Mathematical Society %D 2017 %P 221-254 %V 19 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/664/ %R 10.4171/jems/664 %F JEMS_2017_19_1_a4
Jürgen Berndt; Carlos Olmos; Silvio Reggiani. Compact homogeneous Riemannian manifolds with low coindex of symmetry. Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 221-254. doi: 10.4171/jems/664
Cité par Sources :