Compact homogeneous Riemannian manifolds with low coindex of symmetry
Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 221-254.

Voir la notice de l'article provenant de la source EMS Press

We develop a general structure theory for compact homogeneous Riemannian manifolds in relation to the coindex of symmetry.We will then use these results to classify irreducible, simply connected, compact homogeneous Riemannian manifolds whose coindex of symmetry is less than or equal to three. We will also construct many examples which arise from the theory of polars and centrioles in Riemannian symmetric spaces of compact type.
DOI : 10.4171/jems/664
Classification : 53-XX
Keywords: Compact homogeneous manifolds, symmetric spaces, index of symmetry, Killing fields, polars, centrioles
@article{JEMS_2017_19_1_a4,
     author = {J\"urgen Berndt and Carlos Olmos and Silvio Reggiani},
     title = {Compact homogeneous {Riemannian} manifolds with low coindex of symmetry},
     journal = {Journal of the European Mathematical Society},
     pages = {221--254},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4171/jems/664},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/664/}
}
TY  - JOUR
AU  - Jürgen Berndt
AU  - Carlos Olmos
AU  - Silvio Reggiani
TI  - Compact homogeneous Riemannian manifolds with low coindex of symmetry
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 221
EP  - 254
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/664/
DO  - 10.4171/jems/664
ID  - JEMS_2017_19_1_a4
ER  - 
%0 Journal Article
%A Jürgen Berndt
%A Carlos Olmos
%A Silvio Reggiani
%T Compact homogeneous Riemannian manifolds with low coindex of symmetry
%J Journal of the European Mathematical Society
%D 2017
%P 221-254
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/664/
%R 10.4171/jems/664
%F JEMS_2017_19_1_a4
Jürgen Berndt; Carlos Olmos; Silvio Reggiani. Compact homogeneous Riemannian manifolds with low coindex of symmetry. Journal of the European Mathematical Society, Tome 19 (2017) no. 1, pp. 221-254. doi : 10.4171/jems/664. http://geodesic.mathdoc.fr/articles/10.4171/jems/664/

Cité par Sources :