Top tautological group of $\mathcal M_{g,n}$
Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2925-2951.

Voir la notice de l'article provenant de la source EMS Press

We describe the structure of the top tautological group in the cohomology of the moduli space of smooth genus g curves with n marked points.
DOI : 10.4171/jems/657
Classification : 14-XX, 55-XX
Keywords: Moduli space of curves, cohomology, tautological groups
@article{JEMS_2016_18_12_a6,
     author = {Alexandr Buryak and Sergey Shadrin and Dimitri Zvonkine},
     title = {Top tautological group of $\mathcal M_{g,n}$},
     journal = {Journal of the European Mathematical Society},
     pages = {2925--2951},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2016},
     doi = {10.4171/jems/657},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/657/}
}
TY  - JOUR
AU  - Alexandr Buryak
AU  - Sergey Shadrin
AU  - Dimitri Zvonkine
TI  - Top tautological group of $\mathcal M_{g,n}$
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2925
EP  - 2951
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/657/
DO  - 10.4171/jems/657
ID  - JEMS_2016_18_12_a6
ER  - 
%0 Journal Article
%A Alexandr Buryak
%A Sergey Shadrin
%A Dimitri Zvonkine
%T Top tautological group of $\mathcal M_{g,n}$
%J Journal of the European Mathematical Society
%D 2016
%P 2925-2951
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/657/
%R 10.4171/jems/657
%F JEMS_2016_18_12_a6
Alexandr Buryak; Sergey Shadrin; Dimitri Zvonkine. Top tautological group of $\mathcal M_{g,n}$. Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2925-2951. doi : 10.4171/jems/657. http://geodesic.mathdoc.fr/articles/10.4171/jems/657/

Cité par Sources :