Top tautological group of $\mathcal M_{g,n}$
Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2925-2951
Voir la notice de l'article provenant de la source EMS Press
We describe the structure of the top tautological group in the cohomology of the moduli space of smooth genus g curves with n marked points.
Classification :
14-XX, 55-XX
Keywords: Moduli space of curves, cohomology, tautological groups
Keywords: Moduli space of curves, cohomology, tautological groups
@article{JEMS_2016_18_12_a6,
author = {Alexandr Buryak and Sergey Shadrin and Dimitri Zvonkine},
title = {Top tautological group of $\mathcal M_{g,n}$},
journal = {Journal of the European Mathematical Society},
pages = {2925--2951},
publisher = {mathdoc},
volume = {18},
number = {12},
year = {2016},
doi = {10.4171/jems/657},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/657/}
}
TY - JOUR
AU - Alexandr Buryak
AU - Sergey Shadrin
AU - Dimitri Zvonkine
TI - Top tautological group of $\mathcal M_{g,n}$
JO - Journal of the European Mathematical Society
PY - 2016
SP - 2925
EP - 2951
VL - 18
IS - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/657/
DO - 10.4171/jems/657
ID - JEMS_2016_18_12_a6
ER -
%0 Journal Article
%A Alexandr Buryak
%A Sergey Shadrin
%A Dimitri Zvonkine
%T Top tautological group of $\mathcal M_{g,n}$
%J Journal of the European Mathematical Society
%D 2016
%P 2925-2951
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/657/
%R 10.4171/jems/657
%F JEMS_2016_18_12_a6
Alexandr Buryak; Sergey Shadrin; Dimitri Zvonkine. Top tautological group of $\mathcal M_{g,n}$. Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2925-2951. doi: 10.4171/jems/657
Cité par Sources :