On non-forking spectra
Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2821-2848.

Voir la notice de l'article provenant de la source EMS Press

Non-forking is one of the most important notions in modern model theory capturing the idea of a generic extension of a type (which is a far-reaching generalization of the concept of a generic point of a variety).
DOI : 10.4171/jems/654
Classification : 03-XX
Keywords: Forking, dividing, NIP, NTP2, circularization, Dedekind cuts, cardinal arithmetic
@article{JEMS_2016_18_12_a3,
     author = {Artem Chernikov and Itay Kaplan and Saharon Shelah},
     title = {On non-forking spectra},
     journal = {Journal of the European Mathematical Society},
     pages = {2821--2848},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2016},
     doi = {10.4171/jems/654},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/654/}
}
TY  - JOUR
AU  - Artem Chernikov
AU  - Itay Kaplan
AU  - Saharon Shelah
TI  - On non-forking spectra
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2821
EP  - 2848
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/654/
DO  - 10.4171/jems/654
ID  - JEMS_2016_18_12_a3
ER  - 
%0 Journal Article
%A Artem Chernikov
%A Itay Kaplan
%A Saharon Shelah
%T On non-forking spectra
%J Journal of the European Mathematical Society
%D 2016
%P 2821-2848
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/654/
%R 10.4171/jems/654
%F JEMS_2016_18_12_a3
Artem Chernikov; Itay Kaplan; Saharon Shelah. On non-forking spectra. Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2821-2848. doi : 10.4171/jems/654. http://geodesic.mathdoc.fr/articles/10.4171/jems/654/

Cité par Sources :