The Calderón problem in transversally anisotropic geometries
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2579-2626.

Voir la notice de l'article provenant de la source EMS Press

We consider the anisotropic Calderón problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work [14], it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform/attenuated geodesic ray transform (or integral against a more general semiclassical limit measure) of an unknown coefficient. In particular, one obtains uniqueness results whenever the geodesic ray transform on the transversal manifold is injective. The second result shows that the boundary measurements in an infinite cylinder uniquely determine the transversal metric. The first result is proved by using complex geometrical optics solutions involving Gaussian beam quasimodes, and the second result follows from a connection between the Calderón problem and Gel’fand’s inverse problem for the wave equation and the boundary control method.
DOI : 10.4171/jems/649
Classification : 35-XX, 58-XX
Keywords: Inverse boundary value problem, Calderón problem, Riemannian manifold, complex geometrical optics solution, boundary control method
@article{JEMS_2016_18_11_a5,
     author = {David Dos Santos Ferreira and Yaroslav Kurylev and Matti Lassas and Mikko Salo},
     title = {The {Calder\'on} problem in transversally anisotropic geometries},
     journal = {Journal of the European Mathematical Society},
     pages = {2579--2626},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2016},
     doi = {10.4171/jems/649},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/649/}
}
TY  - JOUR
AU  - David Dos Santos Ferreira
AU  - Yaroslav Kurylev
AU  - Matti Lassas
AU  - Mikko Salo
TI  - The Calderón problem in transversally anisotropic geometries
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2579
EP  - 2626
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/649/
DO  - 10.4171/jems/649
ID  - JEMS_2016_18_11_a5
ER  - 
%0 Journal Article
%A David Dos Santos Ferreira
%A Yaroslav Kurylev
%A Matti Lassas
%A Mikko Salo
%T The Calderón problem in transversally anisotropic geometries
%J Journal of the European Mathematical Society
%D 2016
%P 2579-2626
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/649/
%R 10.4171/jems/649
%F JEMS_2016_18_11_a5
David Dos Santos Ferreira; Yaroslav Kurylev; Matti Lassas; Mikko Salo. The Calderón problem in transversally anisotropic geometries. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2579-2626. doi : 10.4171/jems/649. http://geodesic.mathdoc.fr/articles/10.4171/jems/649/

Cité par Sources :