Local cohomology modules supported at determinantal ideals
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2545-2578.

Voir la notice de l'article provenant de la source EMS Press

We provide new results on the vanishing of local cohomology modules supported at ideals of minors of matrices over arbitrary commutative Noetherian rings. In the process, we compute the local cohomology of rings of polynomials with integer coefficients – supported at generic determinantal ideals – and also obtain results on F-modules and D-modules that are likely to be of independent interest.
DOI : 10.4171/jems/648
Classification : 13-XX, 14-XX
Keywords: Determinantal ideals, local cohomology, vanishing theorems, D-modules, F-modules
@article{JEMS_2016_18_11_a4,
     author = {Gennady Lyubeznik and Anurag K. Singh and Uli Walther},
     title = {Local cohomology modules supported at determinantal ideals},
     journal = {Journal of the European Mathematical Society},
     pages = {2545--2578},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2016},
     doi = {10.4171/jems/648},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/648/}
}
TY  - JOUR
AU  - Gennady Lyubeznik
AU  - Anurag K. Singh
AU  - Uli Walther
TI  - Local cohomology modules supported at determinantal ideals
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2545
EP  - 2578
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/648/
DO  - 10.4171/jems/648
ID  - JEMS_2016_18_11_a4
ER  - 
%0 Journal Article
%A Gennady Lyubeznik
%A Anurag K. Singh
%A Uli Walther
%T Local cohomology modules supported at determinantal ideals
%J Journal of the European Mathematical Society
%D 2016
%P 2545-2578
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/648/
%R 10.4171/jems/648
%F JEMS_2016_18_11_a4
Gennady Lyubeznik; Anurag K. Singh; Uli Walther. Local cohomology modules supported at determinantal ideals. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2545-2578. doi : 10.4171/jems/648. http://geodesic.mathdoc.fr/articles/10.4171/jems/648/

Cité par Sources :