Noncritical holomorphic functions on Stein spaces
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2511-2543
Voir la notice de l'article provenant de la source EMS Press
In this paper we prove that every reduced Stein space admits a holomorphic function without critical points. Furthermore, every closed discrete subset of a reduced Stein space X is the critical locus of a holomorphic function on X. We also show that for every complex analytic stratification with nonsingular strata on a reduced Stein space there exists a holomorphic function whose restriction to every stratum is noncritical. These result provide some information on critical loci of holomorphic functions on desingularizations of Stein spaces. In particular, every 1-convex manifold admits a holomorphic function that is noncritical outside the exceptional variety.
Classification :
32-XX, 57-XX, 58-XX
Keywords: Holomorphic functions, critical points, Stein manifolds, Stein spaces, 1-convex manifolds, stratifications
Keywords: Holomorphic functions, critical points, Stein manifolds, Stein spaces, 1-convex manifolds, stratifications
@article{JEMS_2016_18_11_a3,
author = {Franc Forstneri\v{c}},
title = {Noncritical holomorphic functions on {Stein} spaces},
journal = {Journal of the European Mathematical Society},
pages = {2511--2543},
publisher = {mathdoc},
volume = {18},
number = {11},
year = {2016},
doi = {10.4171/jems/647},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/647/}
}
TY - JOUR AU - Franc Forstnerič TI - Noncritical holomorphic functions on Stein spaces JO - Journal of the European Mathematical Society PY - 2016 SP - 2511 EP - 2543 VL - 18 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/647/ DO - 10.4171/jems/647 ID - JEMS_2016_18_11_a3 ER -
Franc Forstnerič. Noncritical holomorphic functions on Stein spaces. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2511-2543. doi: 10.4171/jems/647
Cité par Sources :