A Gromov–Winkelmann type theorem for flexible varieties
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2483-2510.

Voir la notice de l'article provenant de la source EMS Press

An affine variety X of dimension ≥ 2 is called flexible if its special automorphism group SAut(X) acts transitively on the smooth locus Xreg​ [1]. Recall that SAut(X) is the subgroup of the automorphism group Aut(X) generated by all one-parameter unipotent subgroups [1]. Given a normal, flexible, affine variety X and a closed subvariety Y in X of codimension at least 2, we show that the pointwise stabilizer subgroup of Y in the group SAut(X) acts infinitely transitively on the complement X∖Y, that is, m-transitively for any m≥1. More generally we show such a result for any quasi-affine variety X and codimension ≥ 2 subset Y of X.
DOI : 10.4171/jems/646
Classification : 14-XX, 32-XX
Keywords: Affine varieties, group actions, one-parameter subgroups, transitivity
@article{JEMS_2016_18_11_a2,
     author = {Hubert Flenner and Shulim Kaliman and Mikhail Zaidenberg},
     title = {A {Gromov{\textendash}Winkelmann} type theorem for flexible varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {2483--2510},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2016},
     doi = {10.4171/jems/646},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/646/}
}
TY  - JOUR
AU  - Hubert Flenner
AU  - Shulim Kaliman
AU  - Mikhail Zaidenberg
TI  - A Gromov–Winkelmann type theorem for flexible varieties
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2483
EP  - 2510
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/646/
DO  - 10.4171/jems/646
ID  - JEMS_2016_18_11_a2
ER  - 
%0 Journal Article
%A Hubert Flenner
%A Shulim Kaliman
%A Mikhail Zaidenberg
%T A Gromov–Winkelmann type theorem for flexible varieties
%J Journal of the European Mathematical Society
%D 2016
%P 2483-2510
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/646/
%R 10.4171/jems/646
%F JEMS_2016_18_11_a2
Hubert Flenner; Shulim Kaliman; Mikhail Zaidenberg. A Gromov–Winkelmann type theorem for flexible varieties. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2483-2510. doi : 10.4171/jems/646. http://geodesic.mathdoc.fr/articles/10.4171/jems/646/

Cité par Sources :