On subvarieties with ample normal bundle
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2459-2468
Cet article a éte moissonné depuis la source EMS Press
We show that a pseudoeffective R-divisor has numerical dimension 0 if it is numerically trivial on a subvariety with ample normal bundle. This implies that the cycle class of a curve with ample normal bundle is big, which gives an affirmative answer to a conjecture of Peternell. We also give other positivity properties of such subvarieties.
Classification :
14-XX
Keywords: Ample normal bundles, Hartshorne’s conjecture, positive cycles
Keywords: Ample normal bundles, Hartshorne’s conjecture, positive cycles
@article{JEMS_2016_18_11_a0,
author = {John Christian Ottem},
title = {On subvarieties with ample normal bundle},
journal = {Journal of the European Mathematical Society},
pages = {2459--2468},
year = {2016},
volume = {18},
number = {11},
doi = {10.4171/jems/644},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/644/}
}
John Christian Ottem. On subvarieties with ample normal bundle. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2459-2468. doi: 10.4171/jems/644
Cité par Sources :