On subvarieties with ample normal bundle
Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2459-2468.

Voir la notice de l'article provenant de la source EMS Press

We show that a pseudoeffective R-divisor has numerical dimension 0 if it is numerically trivial on a subvariety with ample normal bundle. This implies that the cycle class of a curve with ample normal bundle is big, which gives an affirmative answer to a conjecture of Peternell. We also give other positivity properties of such subvarieties.
DOI : 10.4171/jems/644
Classification : 14-XX
Keywords: Ample normal bundles, Hartshorne’s conjecture, positive cycles
@article{JEMS_2016_18_11_a0,
     author = {John Christian Ottem},
     title = {On subvarieties with ample normal bundle},
     journal = {Journal of the European Mathematical Society},
     pages = {2459--2468},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2016},
     doi = {10.4171/jems/644},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/644/}
}
TY  - JOUR
AU  - John Christian Ottem
TI  - On subvarieties with ample normal bundle
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2459
EP  - 2468
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/644/
DO  - 10.4171/jems/644
ID  - JEMS_2016_18_11_a0
ER  - 
%0 Journal Article
%A John Christian Ottem
%T On subvarieties with ample normal bundle
%J Journal of the European Mathematical Society
%D 2016
%P 2459-2468
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/644/
%R 10.4171/jems/644
%F JEMS_2016_18_11_a0
John Christian Ottem. On subvarieties with ample normal bundle. Journal of the European Mathematical Society, Tome 18 (2016) no. 11, pp. 2459-2468. doi : 10.4171/jems/644. http://geodesic.mathdoc.fr/articles/10.4171/jems/644/

Cité par Sources :