A categorification of non-crossing partitions
Journal of the European Mathematical Society, Tome 18 (2016) no. 10, pp. 2273-2313.

Voir la notice de l'article provenant de la source EMS Press

We present a categorification of the non-crossing partitions given by crystallographic Coxeter groups. This involves a category of certain bilinear lattices, which are essentially determined by a symmetrisable generalised Cartan matrix together with a particular choice of a Coxeter element. Examples arise from Grothendieck groups of hereditary artin algebras.
DOI : 10.4171/jems/641
Classification : 16-XX, 05-XX, 20-XX
Keywords: Non-crossing partition, hereditary algebra, Grothendieck group, Weyl group, Coxeter group, exceptional sequence, symmetrisable generalised Cartan matrix, perpendicular category
@article{JEMS_2016_18_10_a1,
     author = {Andrew Hubery and Henning Krause},
     title = {A categorification of non-crossing partitions},
     journal = {Journal of the European Mathematical Society},
     pages = {2273--2313},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2016},
     doi = {10.4171/jems/641},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/641/}
}
TY  - JOUR
AU  - Andrew Hubery
AU  - Henning Krause
TI  - A categorification of non-crossing partitions
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2273
EP  - 2313
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/641/
DO  - 10.4171/jems/641
ID  - JEMS_2016_18_10_a1
ER  - 
%0 Journal Article
%A Andrew Hubery
%A Henning Krause
%T A categorification of non-crossing partitions
%J Journal of the European Mathematical Society
%D 2016
%P 2273-2313
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/641/
%R 10.4171/jems/641
%F JEMS_2016_18_10_a1
Andrew Hubery; Henning Krause. A categorification of non-crossing partitions. Journal of the European Mathematical Society, Tome 18 (2016) no. 10, pp. 2273-2313. doi : 10.4171/jems/641. http://geodesic.mathdoc.fr/articles/10.4171/jems/641/

Cité par Sources :