Random walk in random environment with asymptotically zero perturbation
Journal of the European Mathematical Society, Tome 8 (2006) no. 3, pp. 491-513.

Voir la notice de l'article provenant de la source EMS Press

We give criteria for ergodicity, transience and null recurrence for the random walk in random environment on Z+={0,1,2,...}, with reflection at the origin, where the random environment is subject to a vanishing perturbation. Our results complement existing criteria for random walks in random environments and for Markov chains with asymptotically zero drift, and are significantly different to these previously studied cases. Our method is based on a martingale technique - the method of Lyapunov functions.
DOI : 10.4171/jems/64
Classification : 60-XX, 00-XX
Keywords: Random walk in random environment, perturbation of Sinai's regime, recurrence/transience criteria, Lyapunov functions.
@article{JEMS_2006_8_3_a3,
     author = {M.V. Menshikov and Andrew R. Wade},
     title = {Random walk in random environment with asymptotically zero perturbation},
     journal = {Journal of the European Mathematical Society},
     pages = {491--513},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2006},
     doi = {10.4171/jems/64},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/64/}
}
TY  - JOUR
AU  - M.V. Menshikov
AU  - Andrew R. Wade
TI  - Random walk in random environment with asymptotically zero perturbation
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 491
EP  - 513
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/64/
DO  - 10.4171/jems/64
ID  - JEMS_2006_8_3_a3
ER  - 
%0 Journal Article
%A M.V. Menshikov
%A Andrew R. Wade
%T Random walk in random environment with asymptotically zero perturbation
%J Journal of the European Mathematical Society
%D 2006
%P 491-513
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/64/
%R 10.4171/jems/64
%F JEMS_2006_8_3_a3
M.V. Menshikov; Andrew R. Wade. Random walk in random environment with asymptotically zero perturbation. Journal of the European Mathematical Society, Tome 8 (2006) no. 3, pp. 491-513. doi : 10.4171/jems/64. http://geodesic.mathdoc.fr/articles/10.4171/jems/64/

Cité par Sources :