Pseudo-holomorphic functions at the critical exponent
Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1919-1960.

Voir la notice de l'article provenant de la source EMS Press

We study Hardy classes on the disk associated to the equation ∂ˉw=αwˉ for α∈Lr with 2≤r∞. The paper seems to be the first to deal with the case r=2. We prove an analog of the M. Riesz theorem and a topological converse to the Bers similarity principle. Using the connection between pseudo-holomorphic functions and conjugate Beltrami equations, we deduce well-posedness on smooth domains of the Dirichlet problem with weighted Lp boundary data for 2D isotropic conductivity equations whose coefficients have logarithm in W1,2. In particular these are not strictly elliptic. Our results depend on a new multiplier theorem for W01,2​-functions.
DOI : 10.4171/jems/634
Classification : 30-XX, 35-XX, 46-XX
Keywords: Pseudo-holomorphic functions, Hardy spaces, conjugate Beltrami equation, nonstrictly elliptic equations, Dirichlet problem
@article{JEMS_2016_18_9_a2,
     author = {Laurent Baratchart and Alexander Borichev and Slah Chaabi},
     title = {Pseudo-holomorphic functions at the critical exponent},
     journal = {Journal of the European Mathematical Society},
     pages = {1919--1960},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2016},
     doi = {10.4171/jems/634},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/634/}
}
TY  - JOUR
AU  - Laurent Baratchart
AU  - Alexander Borichev
AU  - Slah Chaabi
TI  - Pseudo-holomorphic functions at the critical exponent
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1919
EP  - 1960
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/634/
DO  - 10.4171/jems/634
ID  - JEMS_2016_18_9_a2
ER  - 
%0 Journal Article
%A Laurent Baratchart
%A Alexander Borichev
%A Slah Chaabi
%T Pseudo-holomorphic functions at the critical exponent
%J Journal of the European Mathematical Society
%D 2016
%P 1919-1960
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/634/
%R 10.4171/jems/634
%F JEMS_2016_18_9_a2
Laurent Baratchart; Alexander Borichev; Slah Chaabi. Pseudo-holomorphic functions at the critical exponent. Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1919-1960. doi : 10.4171/jems/634. http://geodesic.mathdoc.fr/articles/10.4171/jems/634/

Cité par Sources :