Classification of higher rank orbit closures in ${\mathcal H^{\mathrm{odd}}(4)}$
Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1855-1872.

Voir la notice de l'article provenant de la source EMS Press

The moduli space of genus 3 translation surfaces with a single zero has two connected components. We show that in the odd connected component Hodd(4) the only GL+(2,R) orbit closures are closed orbits, the Prym locus Q~​(3,−13), and Hodd(4).
DOI : 10.4171/jems/631
Classification : 37-XX, 32-XX
Keywords: Translation surface, Abelian differential, Teichmüller dynamics, affine invariant submanifold, orbit closure, Prym locus, Teichmüller curves
@article{JEMS_2016_18_8_a7,
     author = {David Aulicino and Duc-Manh Nguyen and Alex Wright},
     title = {Classification of higher rank orbit closures in ${\mathcal H^{\mathrm{odd}}(4)}$},
     journal = {Journal of the European Mathematical Society},
     pages = {1855--1872},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2016},
     doi = {10.4171/jems/631},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/631/}
}
TY  - JOUR
AU  - David Aulicino
AU  - Duc-Manh Nguyen
AU  - Alex Wright
TI  - Classification of higher rank orbit closures in ${\mathcal H^{\mathrm{odd}}(4)}$
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1855
EP  - 1872
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/631/
DO  - 10.4171/jems/631
ID  - JEMS_2016_18_8_a7
ER  - 
%0 Journal Article
%A David Aulicino
%A Duc-Manh Nguyen
%A Alex Wright
%T Classification of higher rank orbit closures in ${\mathcal H^{\mathrm{odd}}(4)}$
%J Journal of the European Mathematical Society
%D 2016
%P 1855-1872
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/631/
%R 10.4171/jems/631
%F JEMS_2016_18_8_a7
David Aulicino; Duc-Manh Nguyen; Alex Wright. Classification of higher rank orbit closures in ${\mathcal H^{\mathrm{odd}}(4)}$. Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1855-1872. doi : 10.4171/jems/631. http://geodesic.mathdoc.fr/articles/10.4171/jems/631/

Cité par Sources :