Ricci flow on quasiprojective manifolds II
Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1813-1854
Voir la notice de l'article provenant de la source EMS Press
We study the Ricci flow on complete Kähler metrics that live on the complement of a divisor in a compact complex manifold. In earlier work, we considered finite-volume metrics which, at spatial infinity, are transversely hyperbolic. In the present paper we consider three different types of spatial asymptotics: cylindrical, bulging and conical. We show that in each case, the asymptotics are preserved by the Kähler–Ricci flow.We address long-time existence, parabolic blowdown limits and the role of the Kähler–Ricci flow on the divisor.
@article{JEMS_2016_18_8_a6,
author = {John Lott and Zhou Zhang},
title = {Ricci flow on quasiprojective manifolds {II}},
journal = {Journal of the European Mathematical Society},
pages = {1813--1854},
publisher = {mathdoc},
volume = {18},
number = {8},
year = {2016},
doi = {10.4171/jems/630},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/630/}
}
TY - JOUR AU - John Lott AU - Zhou Zhang TI - Ricci flow on quasiprojective manifolds II JO - Journal of the European Mathematical Society PY - 2016 SP - 1813 EP - 1854 VL - 18 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/630/ DO - 10.4171/jems/630 ID - JEMS_2016_18_8_a6 ER -
John Lott; Zhou Zhang. Ricci flow on quasiprojective manifolds II. Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1813-1854. doi: 10.4171/jems/630
Cité par Sources :