Symplectic fillings of lens spaces as Lefschetz fibrations
Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1515-1535
Cet article a éte moissonné depuis la source EMS Press
We construct a positive allowable Lefschetz fibration over the disk on any minimal (weak) symplectic filling of the canonical contact structure on a lens space. Using this construction we prove that any minimal symplectic filling of the canonical contact structure on a lens space is obtained by a sequence of rational blowdowns from the minimal resolution of the corresponding complex two-dimensional cyclic quotient singularity.
Classification :
57-XX, 32-XX, 53-XX
Keywords: Symplectic fillings, lens spaces, canonical contact structure, Lefschetz fibrations
Keywords: Symplectic fillings, lens spaces, canonical contact structure, Lefschetz fibrations
@article{JEMS_2016_18_7_a3,
author = {Mohan Bhupal and Burak Ozbagci},
title = {Symplectic fillings of lens spaces as {Lefschetz} fibrations},
journal = {Journal of the European Mathematical Society},
pages = {1515--1535},
year = {2016},
volume = {18},
number = {7},
doi = {10.4171/jems/621},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/621/}
}
TY - JOUR AU - Mohan Bhupal AU - Burak Ozbagci TI - Symplectic fillings of lens spaces as Lefschetz fibrations JO - Journal of the European Mathematical Society PY - 2016 SP - 1515 EP - 1535 VL - 18 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/621/ DO - 10.4171/jems/621 ID - JEMS_2016_18_7_a3 ER -
Mohan Bhupal; Burak Ozbagci. Symplectic fillings of lens spaces as Lefschetz fibrations. Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1515-1535. doi: 10.4171/jems/621
Cité par Sources :