$L^p$ norms of higher rank eigenfunctions and bounds for spherical functions
Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1437-1493
Voir la notice de l'article provenant de la source EMS Press
We prove almost sharp upper bounds for the Lp norms of eigenfunctions of the full ring of invariant differential operators on a compact locally symmetric space, as well as their restrictions to maximal flat subspaces. Our proof combines techniques from semiclassical analysis with harmonic theory on reductive groups, and makes use of new asymptotic bounds for spherical functions that are of independent interest.
Classification :
22-XX, 35-XX
Keywords: Lp norms, symmetric spaces, spherical functions
Keywords: Lp norms, symmetric spaces, spherical functions
@article{JEMS_2016_18_7_a1,
author = {Simon Marshall},
title = {$L^p$ norms of higher rank eigenfunctions and bounds for spherical functions},
journal = {Journal of the European Mathematical Society},
pages = {1437--1493},
publisher = {mathdoc},
volume = {18},
number = {7},
year = {2016},
doi = {10.4171/jems/619},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/619/}
}
TY - JOUR AU - Simon Marshall TI - $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions JO - Journal of the European Mathematical Society PY - 2016 SP - 1437 EP - 1493 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/619/ DO - 10.4171/jems/619 ID - JEMS_2016_18_7_a1 ER -
%0 Journal Article %A Simon Marshall %T $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions %J Journal of the European Mathematical Society %D 2016 %P 1437-1493 %V 18 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/619/ %R 10.4171/jems/619 %F JEMS_2016_18_7_a1
Simon Marshall. $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions. Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1437-1493. doi: 10.4171/jems/619
Cité par Sources :