$L^p$ norms of higher rank eigenfunctions and bounds for spherical functions
Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1437-1493.

Voir la notice de l'article provenant de la source EMS Press

We prove almost sharp upper bounds for the Lp norms of eigenfunctions of the full ring of invariant differential operators on a compact locally symmetric space, as well as their restrictions to maximal flat subspaces. Our proof combines techniques from semiclassical analysis with harmonic theory on reductive groups, and makes use of new asymptotic bounds for spherical functions that are of independent interest.
DOI : 10.4171/jems/619
Classification : 22-XX, 35-XX
Keywords: Lp norms, symmetric spaces, spherical functions
@article{JEMS_2016_18_7_a1,
     author = {Simon Marshall},
     title = {$L^p$ norms of higher rank eigenfunctions and bounds for spherical functions},
     journal = {Journal of the European Mathematical Society},
     pages = {1437--1493},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2016},
     doi = {10.4171/jems/619},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/619/}
}
TY  - JOUR
AU  - Simon Marshall
TI  - $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1437
EP  - 1493
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/619/
DO  - 10.4171/jems/619
ID  - JEMS_2016_18_7_a1
ER  - 
%0 Journal Article
%A Simon Marshall
%T $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions
%J Journal of the European Mathematical Society
%D 2016
%P 1437-1493
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/619/
%R 10.4171/jems/619
%F JEMS_2016_18_7_a1
Simon Marshall. $L^p$ norms of higher rank eigenfunctions and bounds for spherical functions. Journal of the European Mathematical Society, Tome 18 (2016) no. 7, pp. 1437-1493. doi : 10.4171/jems/619. http://geodesic.mathdoc.fr/articles/10.4171/jems/619/

Cité par Sources :