Finite orbit decomposition of real flag manifolds
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1391-1403
Voir la notice de l'article provenant de la source EMS Press
Let G be a connected real semi-simple Lie group and H a closed connected subgroup. Let P be a minimal parabolic subgroup of G. It is shown that H has an open orbit on the flag manifold G/P if and only if it has finitely many orbits on G/P. This confirms a conjecture by T. Matsuki.
Classification :
22-XX, 14-XX
Keywords: Flag manifold, orbit decomposition, spherical subgroup
Keywords: Flag manifold, orbit decomposition, spherical subgroup
@article{JEMS_2016_18_6_a7,
author = {Bernhard Kr\"otz and Henrik Schlichtkrull},
title = {Finite orbit decomposition of real flag manifolds},
journal = {Journal of the European Mathematical Society},
pages = {1391--1403},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2016},
doi = {10.4171/jems/617},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/617/}
}
TY - JOUR AU - Bernhard Krötz AU - Henrik Schlichtkrull TI - Finite orbit decomposition of real flag manifolds JO - Journal of the European Mathematical Society PY - 2016 SP - 1391 EP - 1403 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/617/ DO - 10.4171/jems/617 ID - JEMS_2016_18_6_a7 ER -
%0 Journal Article %A Bernhard Krötz %A Henrik Schlichtkrull %T Finite orbit decomposition of real flag manifolds %J Journal of the European Mathematical Society %D 2016 %P 1391-1403 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/617/ %R 10.4171/jems/617 %F JEMS_2016_18_6_a7
Bernhard Krötz; Henrik Schlichtkrull. Finite orbit decomposition of real flag manifolds. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1391-1403. doi: 10.4171/jems/617
Cité par Sources :