Finite orbit decomposition of real flag manifolds
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1391-1403.

Voir la notice de l'article provenant de la source EMS Press

Let G be a connected real semi-simple Lie group and H a closed connected subgroup. Let P be a minimal parabolic subgroup of G. It is shown that H has an open orbit on the flag manifold G/P if and only if it has finitely many orbits on G/P. This confirms a conjecture by T. Matsuki.
DOI : 10.4171/jems/617
Classification : 22-XX, 14-XX
Keywords: Flag manifold, orbit decomposition, spherical subgroup
@article{JEMS_2016_18_6_a7,
     author = {Bernhard Kr\"otz and Henrik Schlichtkrull},
     title = {Finite orbit decomposition of real flag manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {1391--1403},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2016},
     doi = {10.4171/jems/617},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/617/}
}
TY  - JOUR
AU  - Bernhard Krötz
AU  - Henrik Schlichtkrull
TI  - Finite orbit decomposition of real flag manifolds
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1391
EP  - 1403
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/617/
DO  - 10.4171/jems/617
ID  - JEMS_2016_18_6_a7
ER  - 
%0 Journal Article
%A Bernhard Krötz
%A Henrik Schlichtkrull
%T Finite orbit decomposition of real flag manifolds
%J Journal of the European Mathematical Society
%D 2016
%P 1391-1403
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/617/
%R 10.4171/jems/617
%F JEMS_2016_18_6_a7
Bernhard Krötz; Henrik Schlichtkrull. Finite orbit decomposition of real flag manifolds. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1391-1403. doi : 10.4171/jems/617. http://geodesic.mathdoc.fr/articles/10.4171/jems/617/

Cité par Sources :