Twists and resonance of $L$-functions, I
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1349-1389
Cet article a éte moissonné depuis la source EMS Press
We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents ≤1/d of the L-functions of any degree d≥1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.
Classification :
11-XX, 00-XX
Keywords: L-functions, Selberg class, twists, resonance
Keywords: L-functions, Selberg class, twists, resonance
@article{JEMS_2016_18_6_a6,
author = {Jerzy Kaczorowski and Alberto Perelli},
title = {Twists and resonance of $L$-functions, {I}},
journal = {Journal of the European Mathematical Society},
pages = {1349--1389},
year = {2016},
volume = {18},
number = {6},
doi = {10.4171/jems/616},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/616/}
}
TY - JOUR AU - Jerzy Kaczorowski AU - Alberto Perelli TI - Twists and resonance of $L$-functions, I JO - Journal of the European Mathematical Society PY - 2016 SP - 1349 EP - 1389 VL - 18 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/616/ DO - 10.4171/jems/616 ID - JEMS_2016_18_6_a6 ER -
Jerzy Kaczorowski; Alberto Perelli. Twists and resonance of $L$-functions, I. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1349-1389. doi: 10.4171/jems/616
Cité par Sources :