Twists and resonance of $L$-functions, I
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1349-1389.

Voir la notice de l'article provenant de la source EMS Press

We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents ≤1/d of the L-functions of any degree d≥1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.
DOI : 10.4171/jems/616
Classification : 11-XX, 00-XX
Keywords: L-functions, Selberg class, twists, resonance
@article{JEMS_2016_18_6_a6,
     author = {Jerzy Kaczorowski and Alberto Perelli},
     title = {Twists and resonance of $L$-functions, {I}},
     journal = {Journal of the European Mathematical Society},
     pages = {1349--1389},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2016},
     doi = {10.4171/jems/616},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/616/}
}
TY  - JOUR
AU  - Jerzy Kaczorowski
AU  - Alberto Perelli
TI  - Twists and resonance of $L$-functions, I
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1349
EP  - 1389
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/616/
DO  - 10.4171/jems/616
ID  - JEMS_2016_18_6_a6
ER  - 
%0 Journal Article
%A Jerzy Kaczorowski
%A Alberto Perelli
%T Twists and resonance of $L$-functions, I
%J Journal of the European Mathematical Society
%D 2016
%P 1349-1389
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/616/
%R 10.4171/jems/616
%F JEMS_2016_18_6_a6
Jerzy Kaczorowski; Alberto Perelli. Twists and resonance of $L$-functions, I. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1349-1389. doi : 10.4171/jems/616. http://geodesic.mathdoc.fr/articles/10.4171/jems/616/

Cité par Sources :