Estimates on elliptic equations that hold only where the gradient is large
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1321-1338
Voir la notice de l'article provenant de la source EMS Press
We consider a function which is a viscosity solution of a uniformly elliptic equation only at those points where the gradient is large. We prove that the Hölder estimates and the Harnack inequality, as in the theory of Krylov and Safonov, apply to these functions.
Classification :
35-XX
Keywords: Degenerate elliptic equations, regularity, viscosity solutions
Keywords: Degenerate elliptic equations, regularity, viscosity solutions
@article{JEMS_2016_18_6_a4,
author = {Cyril Imbert and Luis Silvestre},
title = {Estimates on elliptic equations that hold only where the gradient is large},
journal = {Journal of the European Mathematical Society},
pages = {1321--1338},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2016},
doi = {10.4171/jems/614},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/614/}
}
TY - JOUR AU - Cyril Imbert AU - Luis Silvestre TI - Estimates on elliptic equations that hold only where the gradient is large JO - Journal of the European Mathematical Society PY - 2016 SP - 1321 EP - 1338 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/614/ DO - 10.4171/jems/614 ID - JEMS_2016_18_6_a4 ER -
%0 Journal Article %A Cyril Imbert %A Luis Silvestre %T Estimates on elliptic equations that hold only where the gradient is large %J Journal of the European Mathematical Society %D 2016 %P 1321-1338 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/614/ %R 10.4171/jems/614 %F JEMS_2016_18_6_a4
Cyril Imbert; Luis Silvestre. Estimates on elliptic equations that hold only where the gradient is large. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1321-1338. doi: 10.4171/jems/614
Cité par Sources :