Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds
Journal of the European Mathematical Society, Tome 18 (2016) no. 5, pp. 997-1041.

Voir la notice de l'article provenant de la source EMS Press

On geometrically finite hyperbolic manifolds Γ\Hd, including those with non-maximal rank cusps, we give upper bounds on the number N(R) of resonances of the Laplacian in disks of size R as R→∞. In particular, if the parabolic subgroups of Γ satisfy a certain Diophantine condition, the bound is N(R)=O(Rd(logR)d+1).
DOI : 10.4171/jems/607
Classification : 58-XX, 35-XX
Keywords: Spectral geometry, hyperbolic manifolds, resonances
@article{JEMS_2016_18_5_a1,
     author = {David Borthwick and Colin Guillarmou},
     title = {Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {997--1041},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2016},
     doi = {10.4171/jems/607},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/607/}
}
TY  - JOUR
AU  - David Borthwick
AU  - Colin Guillarmou
TI  - Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 997
EP  - 1041
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/607/
DO  - 10.4171/jems/607
ID  - JEMS_2016_18_5_a1
ER  - 
%0 Journal Article
%A David Borthwick
%A Colin Guillarmou
%T Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds
%J Journal of the European Mathematical Society
%D 2016
%P 997-1041
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/607/
%R 10.4171/jems/607
%F JEMS_2016_18_5_a1
David Borthwick; Colin Guillarmou. Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds. Journal of the European Mathematical Society, Tome 18 (2016) no. 5, pp. 997-1041. doi : 10.4171/jems/607. http://geodesic.mathdoc.fr/articles/10.4171/jems/607/

Cité par Sources :