Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds
Journal of the European Mathematical Society, Tome 18 (2016) no. 5, pp. 997-1041
Cet article a éte moissonné depuis la source EMS Press
On geometrically finite hyperbolic manifolds Γ\Hd, including those with non-maximal rank cusps, we give upper bounds on the number N(R) of resonances of the Laplacian in disks of size R as R→∞. In particular, if the parabolic subgroups of Γ satisfy a certain Diophantine condition, the bound is N(R)=O(Rd(logR)d+1).
Classification :
58-XX, 35-XX
Keywords: Spectral geometry, hyperbolic manifolds, resonances
Keywords: Spectral geometry, hyperbolic manifolds, resonances
@article{JEMS_2016_18_5_a1,
author = {David Borthwick and Colin Guillarmou},
title = {Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds},
journal = {Journal of the European Mathematical Society},
pages = {997--1041},
year = {2016},
volume = {18},
number = {5},
doi = {10.4171/jems/607},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/607/}
}
TY - JOUR AU - David Borthwick AU - Colin Guillarmou TI - Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds JO - Journal of the European Mathematical Society PY - 2016 SP - 997 EP - 1041 VL - 18 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/607/ DO - 10.4171/jems/607 ID - JEMS_2016_18_5_a1 ER -
%0 Journal Article %A David Borthwick %A Colin Guillarmou %T Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds %J Journal of the European Mathematical Society %D 2016 %P 997-1041 %V 18 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/607/ %R 10.4171/jems/607 %F JEMS_2016_18_5_a1
David Borthwick; Colin Guillarmou. Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds. Journal of the European Mathematical Society, Tome 18 (2016) no. 5, pp. 997-1041. doi: 10.4171/jems/607
Cité par Sources :