Coherent randomness tests and computing the $K$-trivial sets
Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 773-812
Voir la notice de l'article provenant de la source EMS Press
We introduce Oberwolfach randomness, a notion within Demuth's framework of statistical tests with moving components; here the components' movement has to be coherent across levels. We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K-trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the Lebesgue density theorem and Doob's martingale convergence theorem. We also show that random sets which are not Oberwolfach random satisfy highness properties (such as LR-hardness) which mean they are close to computing the halting problem.
Classification :
03-XX, 00-XX
Keywords: Coherent randomness tests, K-trivial sets
Keywords: Coherent randomness tests, K-trivial sets
@article{JEMS_2016_18_4_a2,
author = {Laurent Bienvenu and Noam Greenberg and Anton{\'\i}n Ku\v{c}era and Andr\'e Nies and Dan Turetsky},
title = {Coherent randomness tests and computing the $K$-trivial sets},
journal = {Journal of the European Mathematical Society},
pages = {773--812},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
doi = {10.4171/jems/602},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/602/}
}
TY - JOUR AU - Laurent Bienvenu AU - Noam Greenberg AU - Antonín Kučera AU - André Nies AU - Dan Turetsky TI - Coherent randomness tests and computing the $K$-trivial sets JO - Journal of the European Mathematical Society PY - 2016 SP - 773 EP - 812 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/602/ DO - 10.4171/jems/602 ID - JEMS_2016_18_4_a2 ER -
%0 Journal Article %A Laurent Bienvenu %A Noam Greenberg %A Antonín Kučera %A André Nies %A Dan Turetsky %T Coherent randomness tests and computing the $K$-trivial sets %J Journal of the European Mathematical Society %D 2016 %P 773-812 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/602/ %R 10.4171/jems/602 %F JEMS_2016_18_4_a2
Laurent Bienvenu; Noam Greenberg; Antonín Kučera; André Nies; Dan Turetsky. Coherent randomness tests and computing the $K$-trivial sets. Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 773-812. doi: 10.4171/jems/602
Cité par Sources :