Matroids over a ring
Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 681-731.

Voir la notice de l'article provenant de la source EMS Press

We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the ground set an R-module according to some axioms. When R is a field, we recover matroids. When R=Z, and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively.
DOI : 10.4171/jems/600
Classification : 05-XX, 13-XX
Keywords: Matroid, module over Dedekind ring, arithmetic matroid, valuated matroid, arithmetic Tutte polynomial, tropical flag Dressian, Tutte–Grothendieck ring
@article{JEMS_2016_18_4_a0,
     author = {Alex Fink and Luca Moci},
     title = {Matroids over a ring},
     journal = {Journal of the European Mathematical Society},
     pages = {681--731},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     doi = {10.4171/jems/600},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/600/}
}
TY  - JOUR
AU  - Alex Fink
AU  - Luca Moci
TI  - Matroids over a ring
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 681
EP  - 731
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/600/
DO  - 10.4171/jems/600
ID  - JEMS_2016_18_4_a0
ER  - 
%0 Journal Article
%A Alex Fink
%A Luca Moci
%T Matroids over a ring
%J Journal of the European Mathematical Society
%D 2016
%P 681-731
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/600/
%R 10.4171/jems/600
%F JEMS_2016_18_4_a0
Alex Fink; Luca Moci. Matroids over a ring. Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 681-731. doi : 10.4171/jems/600. http://geodesic.mathdoc.fr/articles/10.4171/jems/600/

Cité par Sources :