Uniqueness and stability of ground states for some nonlinear Schrödinger equations
Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 399-414.

Voir la notice de l'article provenant de la source EMS Press

We discuss the orbital stability of standing waves of a class of nonlinear Schrödinger equations in one space dimension. The crucial feature for our treatment is the presence of a non-constant linear potential that is even and decreasing away from the origin in space. This enables us to establish the orbital stability of all ground states over the whole range of frequencies for which such solutions exist.
DOI : 10.4171/jems/60
Classification : 35-XX, 37-XX, 00-XX
Keywords: Orbital stability, standing waves, ground states
@article{JEMS_2006_8_2_a18,
     author = {Charles A. Stuart},
     title = {Uniqueness and stability of ground states for some nonlinear {Schr\"odinger} equations},
     journal = {Journal of the European Mathematical Society},
     pages = {399--414},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4171/jems/60},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/60/}
}
TY  - JOUR
AU  - Charles A. Stuart
TI  - Uniqueness and stability of ground states for some nonlinear Schrödinger equations
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 399
EP  - 414
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/60/
DO  - 10.4171/jems/60
ID  - JEMS_2006_8_2_a18
ER  - 
%0 Journal Article
%A Charles A. Stuart
%T Uniqueness and stability of ground states for some nonlinear Schrödinger equations
%J Journal of the European Mathematical Society
%D 2006
%P 399-414
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/60/
%R 10.4171/jems/60
%F JEMS_2006_8_2_a18
Charles A. Stuart. Uniqueness and stability of ground states for some nonlinear Schrödinger equations. Journal of the European Mathematical Society, Tome 8 (2006) no. 2, pp. 399-414. doi : 10.4171/jems/60. http://geodesic.mathdoc.fr/articles/10.4171/jems/60/

Cité par Sources :